
 1

BANNER

General Person

Synchronization Guide

CONFIDENTIAL BUSINESS INFORMATION

This documentation is proprietary information of SunGard Higher Education

and is not to be copied, reproduced, lent or disposed of, nor used for any pur-

pose other than that for which it is specifically provided without the written

permission of SGHE.

Prepared For: BANNER System Release 7.0/8.0

Prepared By: SunGard Higher Education

4 Country View Road

Malvern, PA 19355

Date Prepared: November 2008

Copyright 2008 SunGard Higher Education. All Rights Reserved.

 2

Banner System General Person Synchronization Guide

Table of Contents
 Introduction..3

 Merge Functions ...8

 SPRIDEN..9

 F_PREWP...9

 F_PRE_LOOP_CM_API..10

 F_CVT_CURCERR_CLEAN11

 F_PRE_LOOP_EXT_REFRESH12

 F_PRE_LOOP_IND_REFRESH...........................13

 F_SUSPENSE_OVERRIDE14

 F_PRE_LOOP_IDEN_MERGE.............................16

 F_WRAP_CURR_ID_FOR_NAME_CHG19

 F_WRAP_CURR_NAME_FOR_ID_CHG20

 SPBPERS..21

 F_PRE_LOOP_WRAPPER21

 F_PRE_LOOP_EXT_REFRESH22

 F_PRE_LOOP_IND_REFRESH...........................23

 F_ PRE_LOOP_PERS_MERGE24

 SPRADDR...26

 F_PRE_LOOP_WRAPADR...................................26

 F_PRE_LOOP_EXT_REFRESH27

 F_PRE_LOOP_IND_REFRESH...........................28

 F_ PRE_LOOP_ADDR_MERGE29

 Address heirarchy ...31

 Address Type Override by Merge String32

 SPRTELE..33

 F_PRE_LOOP_WRAPTEL....................................33

 F_PRE_LOOP_EXT_REFRESH34

 F_PRE_LOOP_IND_REFRESH...........................35

 F_ PRE_LOOP_TELE_MERGE36

 GOREMAL ..38

 F_PRE_LOOP_WRAPEML...................................38

 F_PRE_LOOP_EXT_REFRESH39

 F_PRE_LOOP_IND_REFRESH...........................40

 F_ CVT_WRAP_GOREMAL_DISP_WEB41

 F_ PRE_LOOP_EMAL_MERGE...........................42

 Implementation ..44

 SPRIDEN..45

 SPBPERS..49

 SPRADDR...52

 SPRTELE..56

 GOREMAL ..59

 GRID-OracleDirectories- External tables62

 Temp Tables Creation ..64

 Functions compilation ...64

 Indexes needed...65

 APPENDIX ..67

 Big Bang Concept..67

 Troubleshooting ..75

 UPD_STATUS meanings ..76

 Flow Chart ..79

 3

General Person merging of matched records
Implementation - Migration - Interfacing

While General Person data itself is not over complicated and conceptually it is
easy to understand – developing the rules to identify when an incoming record
pre-exists in Banner and… developing the rules on how to merge those incoming
person/non-person records to those that pre-exist in Banner… can be challeng-
ing.

During a Banner Implementation, General Person data may or may not pre-exist
in Banner for an individual (or corporation). This truly depends on which Banner
systems are “Live” and where in the implementation cycle your particular system
is going “Live”. If you are not the very first system to be implemented OR you are
implementing in a phased approach OR General Person data exists in the Gen-
eral Person Module then you must check first to see if the person/non-person
you are loading already exists in the system.

Determining the rules by which a record set is deemed to pre-exist in Banner
General Person has to be defined by each Institution. This document assumes
that Banners Common Matching API was used to determine if the record set is a
“Match” or “Suspense” (potential match) based on rules defined in Banner.
However – any match method could be used as long as that method flags the
record set as “Matched” or “Suspended” and loads the Error logging table in the
same manner as the function that calls the Common Matching API does. This
document is not focusing on defining HOW-TO find a match or suspense – but
on the more complicated task of merging file data to pre-existing Banner records.

Determining the rules by which a record set can be merged to pre-existing Ban-
ner records can become fairly complex. Typically this then involved custom cod-
ing to perform the merge for each Institutions rules. True that this usually meant
taking a program developed for some other client and modifying it based on the
current clients needs – but this then meant that there was no real standardized
approach between conversions, consultants and clients.

General

Person

Synchronization

 4

Issue: How then do we bridge the gap between flexibility/customization and stan-
dardization/consistency?

Assumptions:
Each system is converted one at a time even if doing in one fell swoop.

GPSynch is “INTO Banner only”… this is not a bidirectional synchronization.
Please engage SGHE for technical assistance in extraction of data from Banner
for feeds to a legacy system.

** For “BIG BANG” General Person synchronization concepts – please see the
“BIG BANG Concept” in the Appendix

Resolution:
Welcome to the General Person Synchronization methodology!

What is GPSynch and what role does it play in the merging of matched record
sets?

The GPSynch methodology
uses a Grid; which is an Excel
spreadsheet in which the client
can define whether the incom-
ing file data takes precedence
over existing Banner data OR if
the existing Banner data takes
precedence over the incoming
file data… a “Who wins?” meth-
odology. Once the grid is com-
pleted (filled out) – it is saved
as a comma delimited file and
used as the source for an Ora-
cle External table, which in turn
is used by the merging func-
tions, which will be discussed
later.

Since generally we do not take
such a simplistic approach to
biographic data merging – File
vs. Banner per system – we
need flexibility while at the
same time achieving consis-
tency. We need to take into ac-
count questions like:

 5

“Is the record set dealing with a Current Employee that is also a Current Stu-
dent?”

“Is the record set dealing with a Current Vendor that is also a Current Student?”

“Is the record set dealing with a Current Vendor that is also a Constituent?”

“Is the record set dealing with a Constituent that is also a Current Student?”

“Is the record set dealing with a Current Employee that is also a Current Student
who is a Current Vendor and a Constituent?”

“Is the record set dealing with a Former Employee that is also a Current Student
who is a Current Vendor and a Constituent?”
Etc. etc. etc.

This is where GPSynch comes into play. The process uses a set of codes that
represent the state of the record set in each of the four main systems in Banner:
Finance, Human Resources, Student and Advancement.

NOTE: Financial Aid is not included as that system does not convert General Person; that con-
version occurred with the Student System. If Financial Aid was converting General Person data
then we would allow that data to fall into the Student System code set.

The codes and their meaning are listed below:

Finance Human Resources
CV – Current Vendor CE – Current Employee
FV – Former Vendor FE – Former Employee
NO – not in Finance NO – Not in Human Resources

Student Advancement
CS – Current Student CA – Current Alum/Constituent/Friend
FS – Former Student NO – Not in Advancement
NO – Not in Student

These codes are gathered from each system and then concatenated together to
create an eight character “merge string”. This “merge string” is then used to read
the WHO_WINS table (created from the WHO_WINS_EXT Oracle External table
using the Grid spreadsheet) and returns the client defined value of either “BAN” –
Banner wins
or “FIL” - File data wins.

For example: The Institution has already gone live with Finance and HR
but not Advancement and the file is an extraction from the Institutions Stu-
dent system. The Institution develops a policy where pre-existing HR Ban-
ner records are always the most up-to-date if the record is attached to a

 6

Current Employee – therefore Banner wins. However, if the record is at-
tached to a Former Employee and you are bringing in a Current Student
record then the file data from the Student system can update Banner.

We could have a record set that was found to have pre-existing data in
Banner. Suppose our record set is from a Current Employee who once
was a Student at the Institution and therefore pre-exists in Banner and has
been extracted from the legacy Student system.

The merge string would be determined as follows:

NOCEFSNO

Not in Finance Current Employee Former Student Not in Advancement

The merge string always concatenates as follows:

Finance || Human Resources || Student || Advancement

NOTE: This order was chosen on purpose and is to represent the typical implementation
model… Finance, then Human Resources, then Student, then Advancement. (Implemen-
tation order can differ; this is just the typical model order)

Using this merge string and the Banner column name, we can fetch the
winner from the grid. The returned value depends on how the client de-
fined the winner in the Grid. From our information above – the grid would
return BAN – meaning Banner is more current and should remain so. We
can not overwrite current data in Banner – but we can add our data as
needed - name changes, other address types, etc.

Next, we could have a record set that was found to have pre-existing data
in Banner. Suppose our record set is from a Former Employee who is now
a Current Student at the Institution and therefore pre-exists in Banner and
has been extracted from the legacy Student system.

 7

The merge string would be determined as follows:

NOFECSNO

Not in Finance Former Employee Current Student Not in Advancement

Using this merge string and the Banner column name, we can fetch the
winner from the grid. The returned value depends on how the client de-
fined the winner in the grid. From our information above – the grid would
return FIL – meaning File data is more current and should update Banner.
Later in this document we will talk about how each merge function works
for each of the five core General Person tables – some things we update,
some things we make inactive and load our record as new.

Once the merge string in derived, the merge string is then utilized by the merge
functions to determine how to programmatically merge the data from the File with
the data in Banner. This is done by reading the grid for the merge string and for
the table/column you are merging.

The use of the merge string allows us to define a precedence of how the data
should be merged. As in our example above, the status of our record set really
determined what we are able to do to the pre-existing Banner records. The grid
has 54 different merge string combinations that work with the columns that are
found in the five core General Person tables: SPRIDEN, SPBPERS, SPRADDR,
SPRTELE, GOREMAL. The grid can be updated as needed, as rules change,
etc. allowing for a flexible program that does not require any code modifica-
tions(other than potential crosswalking). The merge functions utilize the Banner
baseline API’s for inserting and updating.

Say hello to flexibility and customization.

Meet standardization and consistency.

Next we will discuss the design and logic of each merge function and the custom
columns needed for each temp table.

 8

Merge Functions

This section provides a general discussion of the logic of each function. This sec-
tion is NOT a step by step discussion of the code itself, that can be accomplished
by reading the source code. Later in this document we will discuss the steps
needed to implement the GPSynch methodology for your general person con-
version.

There are 5 core functions in the GPSynch methodology; one for each of the
core tables utilized in Common Matching: SPRIDEN, SPBPERS, SPRADDR,
SPRTELE and GOREMAL.

Other functions exist to compliment the methodology or would be required in a
non-merging General Person conversion.

 9

SPRIDEN

F_PREWP.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function actually
houses calls to seven (7) other functions needed to process the SPRIDEN table
using this methodology. Other custom functions could be added to this function if
needed.

This function accepts four (4) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

Cmsc_code_in – this is the Common Matching code you plan on using. Short
names are best like “CONV” or “STU”

records_in – this is the spriden_cvt_status records that you want to process, typi-
cally N or C flagged records.

Cur_jobid – this is the run number that will be stored in CURCERR.

This function then calls the following seven (7) functions:

F_PRE_LOOP_CM_API.SQL
F_CVT_CURCERR_CLEAN.SQL
F_PRE_LOOP_EXT_REFRESH.SQL
F_PRE_LOOP_IND_REFRESH.SQL
F_SUSPENSE_OVERRIDE.SQL
F_PRE_LOOP_IDEN_MERGE.SQL
F_WRAP_CURR_ID_FOR_NAME_CHG.SQL
F_WRAP_CURR_NAME_FOR_ID_CHG.SQL

These functions will be discussed next.

 10

 F_PRE_LOOP_CM_API.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spriden_convert.sql) disposition is ‘C’
(process_level = ‘C’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts four (4) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

cmsc_code – this is the Common matching source rule name you wish to use

records_in – this is the spriden_cvt_status records that you want to process, typi-
cally N or C flagged records.

cur_jobid – this is the value that comes from the cubcnvt_sequence that corre-
sponds to the run number of the main conversion program spriden_convert.sql

This function pulls record sets as a Cartesian product from SPRIDEN_CVT,
SPBPERS_CVT, SPRADDR_CVT, SPRTELE_CVT, GOREMAL_CVT that have
been flagged as “new” (spriden_cvt_status = ‘N’) in the temp table spriden_cvt.
The function then uses the common matching API using the provided common
matching source code to determine if the record pre-exist in Banner (spri-
den_cvt_status becomes ‘M’ for match) or is a suspicious potential match (spri-
den_cvt_status becomes ‘S’ for suspense). API messages for Match or Sus-
pense records are stored in the error table CURCERR for later use by the sus-
pense override and merging functions.

It is recommended that you review the source code of the function so that you
understand the logic. Please note that this function is very large and is not
viewable from the Converter Tool “view Function” form – use SQL Devel-
oper or similar tool. This function is actually a procedure in “disguise” as
a function

 11

F_CVT_CURCERR_CLEAN.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is intended to clean up error message from previous synchronizations. This
function only truly launches when the conversion routine (spriden_convert.sql)
disposition is ‘C’ (process_level = ‘C’) as we would not want to call this routine
both when running our conversion program “N to C” and “C to I” .

This function accepts one (1) parameter:

Perform_clean – baseline is delivered ‘Y’.

This function performs the “clean” only if the parameter fed to the function is ‘Y’
(which is the delivered default) AND only if ALL records in SPRIDEN_CVT are
new (spriden_cvt_status = ‘N’); as this would indicate a new synchronization and
we want to ensure previous synchronization rows do not exist in CURCERR. In
this case… the function performs an EXECUTE IMMEDIATE of the statement
“truncate table curcerr”

It is recommended that you review the source code of the function so that you
understand the logic.

 12

F_PRE_LOOP_EXT_REFESH.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spriden_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function refreshes the Oracle table WHO_WINS from the Oracle External
Table WHO_WINS_EXT and the Oracle table SUSPENSE_OVERRIDE from the
Oracle External Table SUSPENSE_OVERRIDE_EXT. This was done for two
reasons: (1) Oracle External tables can not be indexed (2) to reduce I/O on the
OS and stop large log files from being produced on the OS.

We want to use the Oracle External table method so that the Grid rules can up-
date dynamically – reducing the need for extra steps to get the merge code to
recognize rules changes over time.

It is recommended that you review the source code of the function so that you
understand the logic.

 13

F_PRE_LOOP_IND_REFESH.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spriden_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures the necessary indexes exist for the methodology.

It is recommended that you review the source code of the function so that you
understand the logic.

 14

F_SUSPENSE_OVERRIDE.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spriden_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function retrieves API suspense error messages from an Oracle table SUS-
PENSE_OVERRIDE.

 15

This message is then used to update the SPRIDEN_CVT_STATUS = ‘S’ for the
record in the table SPRIDEN_CVT to have a new SPRIDEN_CVT_STATUS of
either:

SPRIDEN_CVT_STATUS = ‘M’
override the suspended record to mean actually an exact match. The
merge function will only pull ‘M’ flagged records for merging.

SPRIDEN_CVT_STATUS = ‘L’
override the suspended record to LOAD as a new record. We use L as the
function that we use to call common matching would never pull records
flagged with a SPRIDENCVT_STATUS = ‘L’, that function is designed to
only pull raw or new records – meaning SPRIDEN_CVT_STATUS = ‘N’.
So, your routines would have an L to C run now for the SPRI-
DEN_CONVERT.SQL program.

The function then takes appropriate action of cleaning the error logging table for
these overrides. To maintain an audit, the messages are not removed. Overrid-
den messages to ‘L’ will be prefixed with ‘OVR-‘. Overridden messages to ‘M’ are
simply updated from ‘S’ to ‘M’ in curcerr.

It is recommended that you review the source code of the function so that you
understand the logic.

 16

F_PRE_LOOP_IDEN_MERGE.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spriden_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts three (3) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

enrollment_term – This value is optional and not needed when the implementing
legacy system is SIS and Admissions is not live. Other systems can provide this
value to determine (1) a currently enrolled student by this cut off term and/or (2) a
recent applicant in Admissions. However, when the implementing legacy sys-
tem is SIS – the extraction utility of the legacy data must place the word
“CURRENT” in the CONVERT_DATA_ORIGIN column of the temp table
SPRIDEN_CVT for those ID’s that the institution deems to be current stu-
dents (each institution will have to define what a “current student” actually
means). This is the only way we will be able to determine a “current stu-
dent” as Banner Student is being implemented and is, for all intensive pur-
poses, empty.

This function only pulls record sets from SPRIDEN_CVT that have been flagged
as “matched” by setting the spriden_cvt_status = ‘M’ in the temp table spri-
den_cvt. The function then uses baseline Banner functions to determine the re-
cord sets status in the Banner Systems (f_alumni_constituent_ind,
f_alumni_organization_ind, f_alumni_friend_ind, f_finance_vendor_ind,
f_payroll_employee_ind, f_student_enrollment_ind, f_student_admissions_ind).

 NOTE: if you are converting all General Person from all Legacy Systems first
and then synchronizing – see the appendix on “Big Bang Concept” for alterna-
tives to the functions above

The value from each system is then concatenated together to create a “merge
string”. This merge string is then used to read the grid to determine if the Banner
data takes precedence over the Legacy File data or vice-versa.

 17

Since SPRIDEN is a repeating table, we have the ability to add rows to this table.
Therefore, when reading the grid, the function will only ever look at the values
placed at the intersection of the SPRIDEN_PIDM row and column containing the
derived merge string value. However, other columns for the table shown in RED
are actionable as well.

The function then takes appropriate action of inserting new records and updating
existing records based off the rule “learned” from the grid. Exactly matching data
is flagged by placing the value ‘m’ in a custom column called SPRi-
DEN_UPD_STATUS (custom columns will be discussed in the IMPLEMENTA-
TION section, values used in the %_UPD_STATUS columns are documented in
the appendix).

For example:

You are implementing SIS. Human Resources and Finance have already
gone live in Banner. You record was flagged by Common Matching to be a
match to a pre-existing record in Banner. The record coming from SIS is
for a Current Student and the record in Banner is for a Former Employee.
Your institution has defined the grid such that a Current Student’s SIS
data can update Human Resources data for a Former Employee.

The merge_string = ‘NOFECSNO’ and the grid returned ‘FIL’. The function
determines that the SIS data is different than the current record in Banner.
The function then passes the current record from the SIS FILE record set
to the p_update procedure of the API for SPRIDEN. The Banner record is
set to a non-null change indicator value and the SIS File record becomes
the current Banner record. Name and ID changes from SIS are loaded into

 18

SPRIDEN if not exactly matching an existing change record. Depending
on how the data is different from the pre-existing Banner data… both a
name change record and an ID change record may be created. Further, if
the Banner ID was a generated ID.. and the incoming record “won” as in
this example; you can configure the SPRIDEN_ID column so that BAN is
the winner for ID… for the over all table FIL is the winner. This would allow
the retention of the generated Banner ID to be attached to the Current
Banner record.. and the Legacy ID to become an alternate.

If you need to do any special data processing, crosswalking, etc. Then these
calls need to be placed in the function code as the functions always read from
the raw data columns of the temp table. This should be the only need to modify
the delivered code – however, other customizations may be needed depending
on your institution – though typically that is not the case.

It is recommended that you review the source code of the function so that you
understand the logic. Currently the functions are designed using IF-THEN-ELSE-
END IF which can become confusing.

 19

F_WRAP_CURR_ID_FOR_NAME_CHG.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Wrap Up function; meaning that this function will be
called after the cursor loop in the conversion program. This function was de-
signed to run when the conversion routine (spriden_convert.sql) disposition is ‘C’
(process_level = ‘C’) as a clean up routine after the N to C run. However, we get
the same effect by calling it as a Pre Loop function on a C to I run.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures that the Name change records being processed are asso-
ciated to the ID that is (or is going to be) the current Banner ID. The API will not
allow the name change to be loaded with an ID other than the current Banner ID
(the ID associated with the spriden row where spriden_change_ind is null).

It is recommended that you review the source code of the function so that you
understand the logic.

 20

F_WRAP_CURR_NAME_FOR_ID_CHG.SQL

This function is utilized with the table SPRIDEN. As its name indicates, the func-
tion is implemented as a Wrap Up function; meaning that this function will be
called after the cursor loop in the conversion program. This function was de-
signed to run when the conversion routine (spriden_convert.sql) disposition is ‘C’
(process_level = ‘C’) as a clean up routine after the N to C run. However, we get
the same effect by calling it as a Pre Loop function on a C to I run.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures that the ID change records being processed are associated
to the Name information that is (or is going to be) the current Banner Name. The
API will not allow the ID change to be loaded with name information other than
the current Banner record (the record associated with the spriden row where spri-
den_change_ind is null).

It is recommended that you review the source code of the function so that you
understand the logic.

 21

SPBPERS

F_PRE_LOOP_WRAPPER.SQL

This function is utilized with the table SPBPERS. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function actually
houses calls to three (3) other functions needed to process the SPBPERS table
using this methodology. Other custom functions could be added to this function if
needed.

This function accepts two (2) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

This function then calls the following three (3) functions:

F_PRE_LOOP_EXT_REFRESH.SQL
F_PRE_LOOP_IND_REFRESH.SQL
F_PRE_LOOP_PERS_MERGE.SQL

These functions will be discussed next.

 22

F_PRE_LOOP_EXT_REFESH.SQL

This function is utilized with the table SPBPERS. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spbpers_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function refreshes the Oracle table WHO_WINS from the Oracle External
Table WHO_WINS_EXT and the Oracle table SUSPENSE_OVERRIDE from the
Oracle External Table SUSPENSE_OVERRIDE_EXT. This was done for two
reasons: (1) Oracle External tables can not be indexed (2) to reduce I/O on the
OS and stop large log files from being produced on the OS.

We want to use the Oracle External table method so that the Grid rules can up-
date dynamically – reducing the need for extra steps to get the merge code to
recognize rules changes over time.

It is recommended that you review the source code of the function so that you
understand the logic.

 23

F_PRE_LOOP_IND_REFESH.SQL

This function is utilized with the table SPBPERS. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spbpers_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures the necessary indexes exist for the methodology.

It is recommended that you review the source code of the function so that you
understand the logic.

 24

F_PRE_LOOP_PERS_MERGE.SQL

This function is utilized with the table SPBPERS. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spbpers_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts three (3) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

enrollment_term – This value is optional and not needed when the implementing
legacy system is SIS and Admissions is not live. Other systems can provide this
value to determine (1) a currently enrolled student by this cut off term and/or (2) a
recent applicant in Admissions. However, when the implementing legacy sys-
tem is SIS – the extraction utility of the legacy data must place the word
“CURRENT” in the CONVERT_DATA_ORIGIN column of the temp table
SPRIDEN_CVT for those ID’s that the institution deems to be current stu-
dents (each institution will have to define what a “current student” actually
means). This is the only way we will be able to determine a “current stu-
dent” as Banner Student is being implemented and is, for all intensive pur-
poses, empty.

This function only pulls record sets from SPBPERS_CVT that have been flagged
as “matched” by setting the spbpers_cvt_status = ‘M’ in the temp table
spbpers_cvt. The function then fetches the Merge String from SPRIDEN_CVT
that had already been derived from the merging of Matched SPRIDEN records.
This merge string is then used to read the grid to determine if the Banner data
takes precedence over the Legacy File data or vice-versa. Since SPBPERS is a
base table, we DO NOT have the ability to add rows to this table. Therefore,
when reading the grid, the function will look at the values placed at the intersec-
tion of the SPBPERS column name row and column containing the derived
merge string value. This gives us the ability to specify appropriate action for each
column in SPBPERS and not the table as a whole.

For Example:
We want to allow the Legacy File data to overwrite the Ethnicity if the re-
cord set is not a Current Employee, but we will never allow the overwrite
of SSN if one exists in Banner.

 25

We specify in the intersection of the appropriate columns (merge string
value) for the row containing the column name SPBPERS_ETHN_CODE
and place the code FIL.

We specify in the intersection of the appropriate columns (merge string
value) for the row containing the column name SPBPERS_SSN and place
the code BAN.

The function then takes appropriate action of inserting new records and updating
existing records based off the rule “learned” from the grid. If no row exists for this
record then one is created. If a row exists, then appropriate updates are made
based off of the rule “learned” from the grid. Further, if a row exists in SPBPERS,
but the column is empty – the function will always add the new data regardless of
the value pulled from the grid.

If you need to do any special data processing, crosswalking, etc. Then these
calls need to be placed in the function code as the functions always read from
the raw data columns of the temp table.

It is recommended that you review the source code of the function so that you
understand the logic. Currently the functions are designed using IF-THEN-ELSE-
END IF which can become confusing.

 26

SPRADDR

F_PRE_LOOP_WRAPADR.SQL

This function is utilized with the table SPRADDR. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function actually
houses calls to three (3) other functions needed to process the SPRADDR table
using this methodology. Other custom functions could be added to this function if
needed.

This function accepts two (2) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

This function then calls the following three (3) functions:

F_PRE_LOOP_EXT_REFRESH.SQL
F_PRE_LOOP_IND_REFRESH.SQL
F_PRE_LOOP_ADDR_MERGE.SQL

These functions will be discussed next.

 27

F_PRE_LOOP_EXT_REFESH.SQL

This function is utilized with the table SPRADDR. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spraddr_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function refreshes the Oracle table WHO_WINS from the Oracle External
Table WHO_WINS_EXT and the Oracle table SUSPENSE_OVERRIDE from the
Oracle External Table SUSPENSE_OVERRIDE_EXT. This was done for two
reasons: (1) Oracle External tables can not be indexed (2) to reduce I/O on the
OS and stop large log files from being produced on the OS.

We want to use the Oracle External table method so that the Grid rules can up-
date dynamically – reducing the need for extra steps to get the merge code to
recognize rules changes over time.

It is recommended that you review the source code of the function so that you
understand the logic.

 28

F_PRE_LOOP_IND_REFESH.SQL

This function is utilized with the table SPRADDR. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spraddr_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures the necessary indexes exist for the methodology.

It is recommended that you review the source code of the function so that you
understand the logic.

 29

F_PRE_LOOP_ADDR_MERGE.SQL

This function is utilized with the table SPRADDR. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (spraddr_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts four (4) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

enrollment_term – This value is optional and not needed when the implementing
legacy system is SIS and Admissions is not live. Other systems can provide this
value to determine (1) a currently enrolled student by this cut off term and/or (2) a
recent applicant in Admissions. However, when the implementing legacy sys-
tem is SIS – the extraction utility of the legacy data must place the word
“CURRENT” in the CONVERT_DATA_ORIGIN column of the temp table
SPRIDEN_CVT for those ID’s that the institution deems to be current stu-
dents (each institution will have to define what a “current student” actually
means). This is the only way we will be able to determine a “current stu-
dent” as Banner Student is being implemented and is, for all intensive pur-
poses, empty.

override_date – this is a cut off date that is provided at runtime to allow the over-
ride of the WHO_WINS value of FIL to be forced to BAN. The intention is that if
the address activity date in Banner is greater than this override date then Banner
is acceptably newer and even if FIL is listed in the Grid – BAN should be used as
we want to retain the Banner data as current.

This function only pulls record sets from SPRADDR_CVT that have been flagged
as “matched” by setting the spraddr_cvt_status = ‘M’ in the temp table
spraddr_cvt. The function then fetches the Merge String from SPRIDEN_CVT
that had already been derived from the merging of Matched SPRIDEN records.
This merge string is then used to read the grid to determine if the Banner data
takes precedence over the Legacy File data or vice-versa. Since SPRADDR is a
repeating table, we have the ability to add rows to this table. Therefore, when
reading the grid, the function will only ever look at the values placed at the inter-

 30

section of the SPRADDR_PIDM row and column containing the derived merge
string value.

The function then takes appropriate action of inserting new records and updating
existing records based off the rule “learned” from the grid. Exactly matching data
is flagged by placing the value ‘m’ in a custom column called
SPRADDR_UPD_STATUS (custom columns will be discussed in the IMPLE-
MENTATION section, values used in the %_UPD_STATUS columns are docu-
mented in the appendix).

If the address in Banner exactly matches the address from the FILE for the same
address type but the address status is different; the function uses the rule
“learned” from the grid and updates the address status appropriately (or does not
update).

If the FILE data is not exactly matching but a match is found on address types
alone, the function determines if the FILE address date range
(SPRADDR_FROM_DATE and SPRADDR_TO_DATE) is outside of the defined
range for the matching address type in Banner. If the FILE record is outside of
the Banner address date range then the FILE address is loaded with the next
available sequence number for the PIDM and ATYP. Keep in mind that the con-
version routine for SPRTELE will need to fetch this new address sequence num-
ber to maintain the true link between the address and the telephone number (this
will be discussed with the function for merging telephone numbers in SPRTELE).

For example:

You are implementing SIS. Human Resources and Finance have already
gone live in Banner. You record was flagged by Common Matching to be a
match to a pre-existing record in Banner. The record coming from SIS is
for a Current Student and the record in Banner is for a Former Employee.
Your institution has defined the grid such that a Current Student’s SIS
data can update Human Resources data for a Former Employee.

The merge_string = ‘NOFECSNO’ and the grid returned ‘FIL’. The function
determines that the SIS data is different than the current record in Banner
for the address type (SPRADDR_ATYP_CODE). The function does further
work to determine if the FILE address date range
(SPRADDR_FROM_DATE and SPRADDR_TO_DATE) is outside of the
date range for the existing Banner address of the same address type. If
the FILE record is found to be within the Banner record date range, the
function then passes the current record from the SIS FILE record set to
the p_update procedure of the API for SPRADDR. The Banner record is
set to inactive by terminating the SPRADDR_TO_DATE to a value one
day less than the SPRADDR_FROM_DATE of the FILE data and the FILE
record is loaded using the next available sequence number. If the FILE re-
cord is found to be outside the Banner record date range, the function

 31

then passes the current record from the SIS FILE record set to the
p_create procedure of the API for SPRADDR. The FILE record is loaded
using the next available sequence number.

“Active” Address hierarchy functionality
This function has the further capability of setting an “Active” hierarchy for the
FILE data when your Legacy Address Type code crosswalk has multiple Legacy
Address Type codes becoming one Address Type Code in Banner (i.e. LO and
MA Address Types from Legacy will both become MA Banner Address Type
codes). The issue is as follows: The Legacy record set for the ID has an active
LO Legacy Address Type that is Active and also an MA Legacy Address Type
that is Active. Both of the Legacy Address Type codes will become MA Banner
Address Type codes. Banner can only have one Active Address Type for a date
range at a time. We achieve this by creating a custom column on temp table
SPRADDR_CVT called SPRADDR_ATYP_HEIRARCHY and developing a
crosswalk called ATYP_HEIRARCHY. This crosswalk takes the Legacy Address
Type codes and changes them to a numeric value.

This numeric value is then used as an ORDER BY value so that the address type
you want to be processed first actually gets processed first. Using the Legacy
Address type itself would not work if you wanted MA to be loaded first and then
LO as alphabetically that would be the correct order. This hierarchy gives the
routine the added benefit if the two records are actually the same exact address
but had the Legacy Address Types of LO and MA assigned to it. The function
would load the MA Legacy Address Type record first under the Banner Address
Type of MA (also doing any appropriate merging with existing Banner MA Ad-
dress Type records), then attempt to load the LO Legacy Address Type under
the Banner Address Type of MA – but here would find an exact match to a pre-
existing Banner MA Address Type (the one we just loaded previously) and flag
the second record (the LO Address) as an exact match in the temp table
SPRADDR_CVT by placing ‘m’ in the SPRADDR_UPD_STATUS custom column

 32

(the function also updates the spraddr_seqno value so that the SPRTELE con-
version can fetch the proper link to its address record).

Address Updating by Type and Person States
This function has the further capability of enforcing an override to the decision
based on specific Address Types and Person States (merge_string value).We
utilize an ATYP_OVERRIDE crosswalk concept which GPSynch can read and
determine if for this merge_string of a person for this address type. If a match is
found in the crosswalk, then Banner retains system of record regardless of what
was retrieved from the grid. This functionality is optional and if not configured
would simply be ignored.

If you need to do any special data processing, crosswalking, etc. Then these
calls need to be placed in the function code as the functions always read from
the raw data columns of the temp table.

It is recommended that you review the source code of the function so that you
understand the logic. Currently the functions are designed using IF-THEN-ELSE-
END IF which can become confusing.

 33

SPRTELE

F_PRE_LOOP_WRAPTEL.SQL

This function is utilized with the table SPRTELE. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function actually
houses calls to three (3) other functions needed to process the SPRTELE table
using this methodology. Other custom functions could be added to this function if
needed.

This function accepts two (2) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

This function then calls the following three (3) functions:

F_PRE_LOOP_EXT_REFRESH.SQL
F_PRE_LOOP_IND_REFRESH.SQL
F_PRE_LOOP_TELE_MERGE.SQL

These functions will be discussed next.

 34

F_PRE_LOOP_EXT_REFESH.SQL

This function is utilized with the table SPRTELE. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (sprtele_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function refreshes the Oracle table WHO_WINS from the Oracle External
Table WHO_WINS_EXT and the Oracle table SUSPENSE_OVERRIDE from the
Oracle External Table SUSPENSE_OVERRIDE_EXT. This was done for two
reasons: (1) Oracle External tables can not be indexed (2) to reduce I/O on the
OS and stop large log files from being produced on the OS.

We want to use the Oracle External table method so that the Grid rules can up-
date dynamically – reducing the need for extra steps to get the merge code to
recognize rules changes over time.

It is recommended that you review the source code of the function so that you
understand the logic.

 35

F_PRE_LOOP_IND_REFESH.SQL

This function is utilized with the table SPRTELE. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (sprtele_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures the necessary indexes exist for the methodology.

It is recommended that you review the source code of the function so that you
understand the logic.

 36

F_PRE_LOOP_TELE_MERGE.SQL

This function is utilized with the table SPRTELE. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (sprtele_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts three (3) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

enrollment_term – This value is optional and not needed when the implementing
legacy system is SIS and Admissions is not live. Other systems can provide this
value to determine (1) a currently enrolled student by this cut off term and/or (2) a
recent applicant in Admissions. However, when the implementing legacy sys-
tem is SIS – the extraction utility of the legacy data must place the word
“CURRENT” in the CONVERT_DATA_ORIGIN column of the temp table
SPRIDEN_CVT for those ID’s that the institution deems to be current stu-
dents (each institution will have to define what a “current student” actually
means). This is the only way we will be able to determine a “current stu-
dent” as Banner Student is being implemented and is, for all intensive pur-
poses, empty.

This function only pulls record sets from SPRTELE_CVT that have been flagged
as “matched” by setting the sprtele_cvt_status = ‘M’ in the temp table sprtele_cvt.
The function then fetches the Merge String from SPRIDEN_CVT that had already
been derived from the merging of Matched SPRIDEN records. This merge string
is then used to read the grid to determine if the Banner data takes precedence
over the Legacy File data or vice-versa. Since SPRTELE is a repeating table, we
have the ability to add rows to this table. Therefore, when reading the grid, the
function will only ever look at the values placed at the intersection of the
SPRTELE_PIDM row and column containing the derived merge string value.
However, when an exact match for a FILE telephone number is found against the
Banner telephone number, when reading the grid, the function WILL look at the
values placed at the intersection of the derived merge string value and the follow-
ing columns for SPRTELE: SPRTELE_PHONE_EXT, SPRTELE_UNLIST_IND,
SPRTELE_COMMENT, SPRTELE_INTL_ACCESS.

 37

The function then takes appropriate action of inserting new records and updating
existing records based off the rule “learned” from the grid. Exactly matching data
is flagged by placing the value ‘mBU’ – means “match Banner Updated”… in a
custom column called SPRTELE_UPD_STATUS (custom columns will be dis-
cussed in the IMPLEMENTATION section, values used in the %_UPD_STATUS
columns are documented in the appendix).

If the FILE data is not exactly matching then the FILE telephone record is loaded
with the next available sequence number for the PIDM and TELE code. This
function will fetch the address sequence number from SPRADDR_CVT to main-
tain the true link between the address and the telephone number as it is likely
that when the linked address record was loaded/updated/exactly matched into/in
Banner, a new sequence number was derived/determined.

For example:

You are implementing SIS. Human Resources and Finance have already
gone live in Banner. You record was flagged by Common Matching to be a
match to a pre-existing record in Banner. The record coming from SIS is
for a Current Student and the record in Banner is for a Former Employee.
Your institution has defined the grid such that a Current Student’s SIS
data can update Human Resources data for a Former Employee.

The merge_string = ‘NOFECSNO’ and the grid returned ‘FIL’. The function
determines that the SIS data is different than the current record in Banner.
The function fetches the sequence number for the linked address (if a link
exists) and the FILE record is loaded using the next available sequence
number for telephones.

If you need to do any special data processing, crosswalking, etc. Then these
calls need to be placed in the function code as the functions always read from
the raw data columns of the temp table.

It is recommended that you review the source code of the function so that you
understand the logic. Currently the functions are designed using IF-THEN-ELSE-
END IF which can become confusing.

 38

GOREMAL

F_PRE_LOOP_WRAPEML.SQL

This function is utilized with the table GOREMAL. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function actually
houses calls to four (4) other functions needed to process the GOREMAL table
using this methodology. Other custom functions could be added to this function if
needed.

This function accepts one (1) parameters:

This function accepts two (2) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

This function then calls the following four (4) functions:

F_PRE_LOOP_EXT_REFRESH.SQL
F_PRE_LOOP_IND_REFRESH.SQL
F_CVT_WRAP_GOREMAL_DISP_WEB.SQL
F_PRE_LOOP_EMAL_MERGE.SQL

These functions will be discussed next.

 39

F_PRE_LOOP_EXT_REFESH.SQL

This function is utilized with the table GOREMAL. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (goremal_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function refreshes the Oracle table WHO_WINS from the Oracle External
Table WHO_WINS_EXT and the Oracle table SUSPENSE_OVERRIDE from the
Oracle External Table SUSPENSE_OVERRIDE_EXT. This was done for two
reasons: (1) Oracle External tables can not be indexed (2) to reduce I/O on the
OS and stop large log files from being produced on the OS.

We want to use the Oracle External table method so that the Grid rules can up-
date dynamically – reducing the need for extra steps to get the merge code to
recognize rules changes over time.

It is recommended that you review the source code of the function so that you
understand the logic.

 40

F_PRE_LOOP_IND_REFESH.SQL

This function is utilized with the table GOREMAL. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (goremal_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts one (1) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

This function ensures the necessary indexes exist for the methodology.

It is recommended that you review the source code of the function so that you
understand the logic.

 41

F_CVT_WRAP_GOREMAL_DISP_WEB.SQL

This function is utilized with the table GOREMAL. As its name indicates, the func-
tion is implemented as a Wrap Up function; meaning that this function will be
called after the cursor loop in the conversion program. This function was de-
signed to run when the conversion routine (goremal_convert.sql) disposition is ‘C’
(process_level = ‘C’) as a clean up routine after the N to C run. However, we get
the same effect by calling it as a Pre Loop function on a C to I run.
.

This function accepts no (0) parameters:

This function determines if the email address should be visible on the web. This
is an optional program.

It is recommended that you review the source code of the function so that you
understand the logic.

 42

F_PRE_LOOP_EMAL_MERGE.SQL

This function is utilized with the table GOREMAL. As its name indicates, the func-
tion is implemented as a Pre-Loop function; meaning that this function will be
called before the cursor loop in the conversion program. This function only truly
launches when the conversion routine (goremal_convert.sql) disposition is ‘I’
(process_level = ‘I’) as we would not want to call this routine both when running
our conversion program “N to C” and “C to I” – we only need process this data
once.

This function accepts three (3) parameters:

process_level – this is the value you enter for disposition when running your con-
version program.

system_converting – this is the legacy system you are converting. Valid values
are: SIS, HRS, FRS, ADS

enrollment_term – This value is optional and not needed when the implementing
legacy system is SIS and Admissions is not live. Other systems can provide this
value to determine (1) a currently enrolled student by this cut off term and/or (2) a
recent applicant in Admissions. However, when the implementing legacy sys-
tem is SIS – the extraction utility of the legacy data must place the word
“CURRENT” in the CONVERT_DATA_ORIGIN column of the temp table
SPRIDEN_CVT for those ID’s that the institution deems to be current stu-
dents (each institution will have to define what a “current student” actually
means). This is the only way we will be able to determine a “current stu-
dent” as Banner Student is being implemented and is, for all intensive pur-
poses, empty.

This function only pulls record sets from GOREMAL_CVT that have been flagged
as “matched” by setting the goremal_cvt_status = ‘M’ in the temp table gore-
mal_cvt. The function then fetches the Merge String from SPRIDEN_CVT that
had already been derived from the merging of Matched SPRIDEN records. This
merge string is then used to read the grid to determine if the Banner data takes
precedence over the Legacy File data or vice-versa. Since GOREMAL is a re-
peating table, we have the ability to add rows to this table. Therefore, when read-
ing the grid, the function will only ever look at the values placed at the intersec-
tion of the GOREMAL_PIDM row and column containing the derived merge string
value. However, when an exact match for a FILE email address is found against
the Banner email address, when reading the grid, the function WILL look at the
values placed at the intersection of the derived merge string value and the follow-
ing columns for GOREMAL: GOREMAL_PREFERRED_IND, GORE-
MAL_STATUS_IND, GOREMAL_COMMENT, GOREMAL_DISP_WEB_IND.

 43

The function then takes appropriate action of inserting new records and updating
existing records based off the rule “learned” from the grid. Exactly matching data
is flagged by placing the value ‘mBU’ – means “match Banner Updated”… in a
custom column called GOREMAL_UPD_STATUS (custom columns will be dis-
cussed in the IMPLEMENTATION section, values used in the %_UPD_STATUS
columns are documented in the appendix).

For example:

You are implementing SIS. Human Resources and Finance have already
gone live in Banner. You record was flagged by Common Matching to be a
match to a pre-existing record in Banner. The record coming from SIS is
for a Current Student and the record in Banner is for a Former Employee.
Your institution has defined the grid such that a Current Student’s SIS
data can update Human Resources data for a Former Employee.

The merge_string = ‘NOFECSNO’ and the grid returned ‘FIL’. The function
determines that the SIS data is different than the current record in Banner.
The FILE record is loaded.

If you need to do any special data processing, crosswalking, etc. Then these
calls need to be placed in the function code as the functions always read from
the raw data columns of the temp table.

It is recommended that you review the source code of the function so that you
understand the logic. Currently the functions are designed using IF-THEN-ELSE-
END IF which can become confusing.

 44

IMPLEMENTATION

In order to implement the GPSynch methodology, you will need to have a
method for determining that the FILE record is an exact match to one and only
one Banner record. The GPSynch methodology was designed to work with the
F_PRE_LOOP_CM_API.SQL function delivered with the Converter Tool. How-
ever, as long as the records in the 5 core temp tables (SPRIDEN_CVT,
SPBPERS_CVT, SPRADDR_CVT, SPRTELE_CVT, GOREMAL_CVT) are
flagged as ‘M’ in the <table_name>_cvt_status column and the exactly
“matched-to” record information from Banner is loaded into table CURCERR in
the same manner the F_PRE_LOOP_CM_API.SQL function would, the process
will not know the difference. It is recommended that all 5 core tamp tables are
loaded(they must all exist) at time of duplicate checking and the <ta-
ble_name>_cvt_status is set appropriately for the record set across all tables
when a match is found.

Lastly, the assumption is that you are using the Converter Tool for your conver-
sion processing. If not using the Converter Tool, the database objects used
would need to be (and could be) created as a standalone for this process.

Before insertion into Banner we will be merging exact matches. To accommodate
that we will need to add new custom rows to the five core tables we will use for
common matching.

NOTE: the installation script gp_synch.sql(sh) for the GPS methodology will do
this – use this information as a guide for installation verification.

 45

Add the following to Converter Tool definition for table SPRIDEN:

SPRIDEN_UPD_STATUS

load order 21 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

SPRIDEN_MERGE_STRING

load order 22 (or next available)
length = 8
required unchecked
load unchecked
insert unchecked
default action blank

SPRIDEN_WHO_WINS

load order 23 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

 46

Next, you will want to add the Pre Loop function to the Wrapup Function field in
the Converter Tool. Generally, there are several pre-loop and wrap-up function
calls needed for SPRIDEN, so a larger pre-loop function will need to be utilized to
accommodate the multiple calls.

Below is the recommended modification to F_PREWP.SQL:

CREATE OR REPLACE FUNCTION F_PREWP
 (process_level varchar2, cmsc_code_in varchar2,
 records_in varchar2,cur_jobid NUMBER)

 return varchar2
IS
--
-- FILE NAME..: F_PRE_LOOP_WRP
-- RELEASE....:
-- OBJECT NAME: F_PRE_LOOP_WRP
-- PRODUCT....: SCTCVT
-- USAGE......:
-- COPYRIGHT..:
--
-- DESCRIPTION:
-- Pre Loop function that calls functions to accomodate both a PRE and WRAP
--
-- pass in process_level variable then the Common Matching rule code
-- then cur_jobid variable call should look like this:
-- f_prewp(process_level,'CONV',records_in,cur_jobid)
-- watch out as call can't be longer than 50 characters
--
-- DESCRIPTION END
--
-- AUDIT TRAIL:
-- 20061024 - new version of functions delivered
--
--
 ws_insert_count number;
 ws_error_count number;
 ws_dummy varchar2(4000);
BEGIN
 -- This is to refresh CURCERR table.
 BEGIN
 IF records_in = 'N' AND process_level = 'C' THEN
 ws_dummy := F_CVT_CURCERR_CLEAN('Y'); -- will truncate curcerr
 --ws_dummy := F_CVT_CURCERR_CLEAN('N'); -- will NOT truncate curcerr
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to refresh WHO_WINS and SUSPENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'C' THEN
 ws_dummy := F_PRE_LOOP_EXT_REFRESH('I');
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to ensure proper indexes exist.
 BEGIN
 IF process_level = 'C' THEN
 ws_dummy := F_PRE_LOOP_IND_REFRESH('I');
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to check for duplicates in Banner using Common matching

 47

 BEGIN
 IF records_in = 'N' and process_level = 'C' THEN
 ws_dummy :=
F_PRE_LOOP_CM_API(process_level,cmsc_code_in,records_in,cur_jobid);
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to overide the suspense records depending on value retrieved from SUS-
PENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_SUSPENSE_OVERRIDE(process_level);
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to merge the File records with existing Banner records depending on
value retrieved from WHO_WINS Matrix.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_IDEN_MERGE(process_level,'SIS');
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to fix the Name change records for non-duplicates so that the API will
load them under the new Banner Generated ID.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_WRAP_CURR_ID_FOR_NAME_CHG('C');
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to fix the ID change records for non-duplicates so that the API will
load them.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_WRAP_CURR_NAME_FOR_ID_CHG('C','F');
 IF ws_dummy like 'ERR-%' or ws_dummy like 'ORA-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 commit;

 return 'Successful completion of F_PREWP';

EXCEPTION
 WHEN OTHERS THEN
 RETURN SUBSTR('ERR- in F_PREWP '||SQLERRM, 1,200);

END F_PREWP;
/
SHOW ERRORS

**note that ‘SIS’ should be replaced with the Legacy System you are implementing. Valid values

are FRS, HRS, SIS, ADS.

**note that ‘CONV’ should be replaced with the Common Matching rule you are using – see

function example source code

 48

This function call
F_PREWP(PROCESS_LEVEL,’SIS’,RECORDS_IN,CUR_JOBID) should
be placed in the Converter Tool rules (see screenshot):

 49

Add the following to Converter Tool definition for table SPBPERS:

SPBPERS_UPD_STATUS

load order 47 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

SPBPERS_MERGE_STRING

load order 48 (or next available)
length = 8
required unchecked
load unchecked
insert unchecked
default action blank

SPBPERS_WHO_WINS

load order 49 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

 50

Next, you will want to add the Pre Loop function to the Wrapup Function field in
the Converter Tool. If there are several pre-loop and wrap-up function calls
needed for SPBPERS, a larger pre-loop function will need to be utilized to ac-
commodate the multiple calls as was done for SPRIDEN. Below is a SAMPLE
wrapper function.

Below is the recommended modification to F_PRE_LOOP_WRAPPER.SQL:

CREATE OR REPLACE FUNCTION F_PRE_LOOP_WRAPPER
 (process_level varchar2,
 system_converting IN varchar2)

 return varchar2
IS
--
-- FILE NAME..: F_PRE_LOOP_WRAPPER
-- RELEASE....:
-- OBJECT NAME: F_PRE_LOOP_WRAPPER
-- PRODUCT....: SCTCVT
-- USAGE......:
-- COPYRIGHT..:
--
-- DESCRIPTION:
-- Pre Loop function that calls functions to accomodate both a PRE and WRAP
--
--
-- DESCRIPTION END
--
-- AUDIT TRAIL:
--
--
--
 ws_insert_count number;
 ws_error_count number;
 ws_dummy varchar2(4000);
BEGIN
 -- This is to refresh WHO_WINS and SUSPENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_EXT_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to ensure proper indexes exist.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_IND_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to merge the File records with existing Banner records depending on
value retrieved from WHO_WINS Matrix.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_TELE_MERGE(process_level,'SIS');
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;

 commit;

 51

 return 'Successful completion of F_PRE_LOOP_WRAPPER';

EXCEPTION
 WHEN OTHERS THEN
 RETURN SUBSTR('ERR- in F_PRE_LOOP_WRAPPER '||SQLERRM, 1,200);

END F_PRE_LOOP_WRAPPER;
/
SHOW ERRORS

This function call F_PRE_LOOP_WRAPPER(process_level,’SIS’) should be
placed in the Converter Tool rules (see screenshot):

**note that ‘SIS’ should be replaced with the Legacy System you are implementing. Valid values

are FRS, HRS, SIS, ADS

 52

Add the following to Converter Tool definition for table SPRADDR:

SPRADDR_UPD_STATUS

load order 28 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

SPRADDR_MERGE_STRING

load order 29 (or next available)
length = 8
required unchecked
load unchecked
insert unchecked
default action blank

SPRADDR_WHO_WINS

load order 30 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

 53

SPRADDR_ATYP_HEIRARCHY
load order 31 (or next available)
length = 2
required unchecked
load unchecked
insert unchecked
default action blank
convert function -

F_CVT_CURCVAL('ATYP_HEIRARCHY',spraddr_rec.convert_atyp_code)

** this is what will determine the hierarchy of the address types for insertion into
banner.

You may need to create a crosswalk called ATYP_HEIRARCHY with the legacy
Address Type crosswalked to a number value that dictates the precedence, but
you only need to do this if you are combining legacy Address Type codes to one
in Banner.

You may need to build the ATYP_OVERRIDE crosswalk if you need to use the
“Address Updating by Type and Person State” functionality.

 54

Next, you will want to add the Pre Loop function to the Wrapup Function field in
the Converter Tool. If there are several pre-loop and wrap-up function calls
needed for SPRADDR, a larger pre-loop function will need to be utilized to ac-
commodate the multiple calls as was done for SPRIDEN. Below is a SAMPLE
wrapper function.

Below is the recommended modification to F_PRE_LOOP_WRAPADR.SQL:

CREATE OR REPLACE FUNCTION F_PRE_LOOP_WRAPADR
 (process_level varchar2,
 system_converting IN varchar2)

 return varchar2
IS
--
-- FILE NAME..: F_PRE_LOOP_WRAPADR
-- RELEASE....:
-- OBJECT NAME: F_PRE_LOOP_WRAPADR
-- PRODUCT....: SCTCVT
-- USAGE......:
-- COPYRIGHT..:
--
-- DESCRIPTION:
-- Pre Loop function that calls functions to accomodate both a PRE and WRAP
--
--
-- DESCRIPTION END
--
-- AUDIT TRAIL:
--
--
--
 ws_insert_count number;
 ws_error_count number;

 55

 ws_dummy varchar2(4000);
BEGIN
 -- This is to refresh WHO_WINS and SUSPENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_EXT_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to ensure proper indexes exist.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_IND_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to merge the File records with existing Banner records depending on
value retrieved from WHO_WINS Matrix.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_ADDR_MERGE(process_level,'SIS');
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 commit;

 return 'Successful completion of F_PRE_LOOP_WRAPADR';

EXCEPTION
 WHEN OTHERS THEN
 RETURN SUBSTR('ERR- in F_PRE_LOOP_WRAPADR '||SQLERRM, 1,200);

END F_PRE_LOOP_WRAPADR;
/
SHOW ERRORS

This function call F_PRE_LOOP_WRAPADR(process_level,’SIS’) should be
placed in the Converter Tool rules (see screenshot):

**note that ‘SIS’ should be replaced with the Legacy System you are implementing. Valid values

are FRS, HRS, SIS, ADS

 56

Add the following to Converter Tool definition for table SPRTELE:

SPRTELE_UPD_STATUS

load order 17 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

SPRTELE_MERGE_STRING

load order 18 (or next available)
length = 8
required unchecked
load unchecked
insert unchecked
default action blank

SPRTELE_WHO_WINS

load order 19 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

 57

Next, you will want to add the Pre Loop function to the Wrapup Function field in
the Converter Tool. If there are several pre-loop and wrap-up function calls
needed for SPRTELE, a larger pre-loop function will need to be utilized to ac-
commodate the multiple calls as was done for SPRIDEN. Below is a SAMPLE
wrapper function.

Below is the recommended modification to F_PRE_LOOP_WRAPTEL.SQL:

CREATE OR REPLACE FUNCTION F_PRE_LOOP_WRAPTEL
 (process_level varchar2,
 system_converting IN varchar2)
 return varchar2
IS
--
-- FILE NAME..: F_PRE_LOOP_WRAPTEL
-- RELEASE....:
-- OBJECT NAME: F_PRE_LOOP_WRAPTEL
-- PRODUCT....: SCTCVT
-- USAGE......:
-- COPYRIGHT..:
--
-- DESCRIPTION:
-- Pre Loop function that calls functions to accomodate both a PRE and WRAP
--
--
-- DESCRIPTION END
--
-- AUDIT TRAIL:
--
--
--
 ws_insert_count number;
 ws_error_count number;
 ws_dummy varchar2(4000);
BEGIN
 -- This is to refresh WHO_WINS and SUSPENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_EXT_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to ensure proper indexes exist.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_IND_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to merge the File records with existing Banner records depending on
value retrieved from WHO_WINS Matrix.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_TELE_MERGE(process_level,'SIS');
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 commit;

 return 'Successful completion of F_PRE_LOOP_WRAPTEL';

 58

EXCEPTION
 WHEN OTHERS THEN
 RETURN SUBSTR('ERR- in F_PRE_LOOP_WRAPTEL '||SQLERRM, 1,200);

END F_PRE_LOOP_WRAPTEL;
/
SHOW ERRORS

This function F_PRE_LOOP_WRAPTEL(process_level,’SIS’) call should be
placed in the Converter Tool rules (see screenshot):

**note that ‘SIS’ should be replaced with the Legacy System you are implementing. Valid values

are FRS, HRS, SIS, ADS

 59

Add the following to Converter Tool definition for table GOREMAL:

GOREMAL_UPD_STATUS

load order 11 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

GOREMAL_MERGE_STRING

load order 12 (or next available)
length = 8
required unchecked
load unchecked
insert unchecked
default action blank

GOREMAL_WHO_WINS

load order 13 (or next available)
length = 3
required unchecked
load unchecked
insert unchecked
default action blank

 60

Next, you will want to add the Pre Loop function to the Wrapup Function field in
the Converter Tool. If there are several pre-loop and wrap-up function calls
needed for SPRTELE, a larger pre-loop function will need to be utilized to ac-
commodate the multiple calls as was done for SPRIDEN. Below is a SAMPLE
wrapper function.

Below is the recommended modification to F_PRE_LOOP_WRAPEML.SQL:

CREATE OR REPLACE FUNCTION F_PRE_LOOP_WRAPEML
 (process_level varchar2,
 system_converting IN varchar2)
 return varchar2
IS
--
-- FILE NAME..: F_PRE_LOOP_WRAPEML
-- RELEASE....:
-- OBJECT NAME: F_PRE_LOOP_WRAPEML
-- PRODUCT....: SCTCVT
-- USAGE......:
-- COPYRIGHT..:
--
-- DESCRIPTION:
-- Pre Loop function that calls functions to accomodate both a PRE and WRAP
--
--
-- DESCRIPTION END
--
-- AUDIT TRAIL:
--
--
--
 ws_insert_count number;
 ws_error_count number;
 ws_dummy varchar2(4000);
BEGIN
 -- This is to refresh WHO_WINS and SUSPENSE_OVERRIDE table.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_EXT_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to ensure proper indexes exist.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_IND_REFRESH(process_level);
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to first check to see if web display can be enabled
 BEGIN
 IF process_level = 'C' THEN
 ws_dummy := F_CVT_WRAP_GOREMAL_DISP_WEB();
 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;
 -- This is to merge the File records with existing Banner records depending on
value retrieved from WHO_WINS Matrix.
 BEGIN
 IF process_level = 'I' THEN
 ws_dummy := F_PRE_LOOP_EMAL_MERGE(process_level,'SIS');

 61

 IF ws_dummy like 'ERR-%' THEN
 return 'ERR-'||ws_dummy;
 END IF;
 END IF;
 END;

 commit;

 return 'Successful completion of F_PRE_LOOP_WRAPEML';

EXCEPTION
 WHEN OTHERS THEN
 RETURN SUBSTR('ERR- in F_PRE_LOOP_WRAPEML '||SQLERRM, 1,200);

END F_PRE_LOOP_WRAPEML;
/
SHOW ERRORS

**note that ‘SIS’ should be replaced with the Legacy System you are implementing. Valid values

are FRS, HRS, SIS, ADS

This function call F_PRE_LOOP_WRAPEML(PROCESS_LEVEL,’SIS’) should
be placed in the Converter Tool rules (see screenshot):

 62

Setting up the WHO_WINS grid:

At this point all the Converter Tool Rules have been defined. Next we need to set
up the Grid. You should work with decision makers in completing the Grid
(who_wins.xls). Once the Grid is completed, you will need to save the Excel
spreadsheet as a comma delimited file (choose .csv choice when performing a
SAVE AS):

**note: when creating the who_wins.csv from the who_wins.xls - remove the comments columns
from the .csv file

Next, place the “who_wins.csv file in the appropriate OS directory. For example:

/shared/appldev/common/ctool/stucvt/genpers

Next you will create the Oracle Directory in SQL so that your Oracle External ta-
ble will know where to find the Grid (or who_wins.csv) and Suspense Override
information.

Syntax:

Create or replace directory ext_merge_table as ‘<os_path_name>’;

 63

From our example OS directory above we would type:

create or replace directory ext_merge_table as '/shared/appldev/common/ctool/stucvt/genpers';

Next, we create the Oracle External Tables by running the following in SQL:

create table who_wins_ext
(column_name varchar2(60),
CVCECSCA varchar2(3),
CVCECSNO varchar2(3),
CVCEFSCA varchar2(3),
CVCEFSNO varchar2(3),
CVCENOCA varchar2(3),
CVCENONO varchar2(3),
CVFECSCA varchar2(3),
CVFECSNO varchar2(3),
CVFEFSCA varchar2(3),
CVFEFSNO varchar2(3),
CVFENOCA varchar2(3),
CVFENONO varchar2(3),
CVNOCSCA varchar2(3),
CVNOCSNO varchar2(3),
CVNOFSCA varchar2(3),
CVNOFSNO varchar2(3),
CVNONOCA varchar2(3),
CVNONONO varchar2(3),
FVCECSCA varchar2(3),
FVCECSNO varchar2(3),
FVCEFSCA varchar2(3),
FVCEFSNO varchar2(3),
FVCENOCA varchar2(3),
FVCENONO varchar2(3),
FVFECSCA varchar2(3),
FVFECSNO varchar2(3),
FVFEFSCA varchar2(3),
FVFEFSNO varchar2(3),
FVFENOCA varchar2(3),
FVFENONO varchar2(3),
FVNOCSCA varchar2(3),
FVNOCSNO varchar2(3),
FVNOFSCA varchar2(3),
FVNOFSNO varchar2(3),
FVNONOCA varchar2(3),
FVNONONO varchar2(3),
NOCECSCA varchar2(3),
NOCECSNO varchar2(3),
NOCEFSCA varchar2(3),
NOCEFSNO varchar2(3),
NOCENOCA varchar2(3),
NOCENONO varchar2(3),
NOFECSCA varchar2(3),
NOFECSNO varchar2(3),
NOFEFSCA varchar2(3),
NOFEFSNO varchar2(3),

 64

NOFENOCA varchar2(3),
NOFENONO varchar2(3),
NONOCSCA varchar2(3),
NONOCSNO varchar2(3),
NONOFSCA varchar2(3),
NONOFSNO varchar2(3),
NONONOCA varchar2(3),
NONONONO varchar2(3))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_merge_table
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ','
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('who_wins.csv')
)
 REJECT LIMIT UNLIMITED;

 create table suspense_override_ext
 (error_message_to_override varchar2(1000),
 new_cvt_status varchar2(1))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_merge_table
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('suspense_override.csv')
)

 REJECT LIMIT UNLIMITED;

Next, Create temp tables

@spriden_cvt_create.sql
@spbpers_cvt_create.sql
@spraddr_cvt_create.sql
@sprtele_cvt_create.sql
@goremal_cvt_create.sql

Next, compile functions for merging:

@f_cvt_flag_match.sql
@f_pre_loop_cm_api.sql
@f_pre_loop_iden_merge.sql
@f_pre_loop_pers_merge.sql
@f_pre_loop_addr_merge.sql
@f_pre_loop_tele_merge.sql
@f_pre_loop_emal_merge.sql
@f_suspense_override.sql
@f_pre_loop_ext_refresh.sql

 65

@f_pre_loop_ind_refresh.sql
@f_wrap_curr_name_for_id_chg.sql
@f_cvt_curcerr_clean.sql
@f_pre_loop_wrp.sql
@f_pre_loop_wrapper.sql
@f_pre_loop_wrapadr.sql
@f_pre_loop_wraptel.sql
@f_pre_loop_wrapeml.sql

The following indexes will improve performance of the merging functions:

create index temp_index1 on saturn.spriden(spriden_id);
create index dupe_index1 on spriden_cvt(convert_id);
create index dupe_index2 on spriden_cvt(convert_pidm);
create index dupe_index3 on spbpers_cvt(convert_pidm, spbpers_cvt_status);
create index dupe_index4 on spraddr_cvt(convert_pidm, spraddr_cvt_status);
create index dupe_index5 on sprtele_cvt(convert_pidm, sprtele_cvt_status);
create index dupe_index6 on goremal_cvt(convert_pidm, goremal_cvt_status);
create index dupe_index7 on spriden_cvt(convert_pidm, spriden_cvt_status);
create index dupe_index8 on spriden_cvt(convert_id, spriden_cvt_status);
create index dupe_index9 on spriden_cvt(convert_change_ind, spriden_cvt_status);
create index dupe_index10 on spbpers_cvt(convert_pidm);
create index dupe_index11 on spraddr_cvt(convert_pidm);
create index dupe_index12 on sprtele_cvt(convert_pidm);
create index dupe_index13 on goremal_cvt(convert_pidm);
create index dupe_index14 on curcerr(curcerr_table_owner, curcerr_column_name,
curcerr_legacy_value, curcerr_record_id);
create index dupe_index15 on curcerr(curcerr_table_owner, curcerr_record_id);
create index dupe_index16 on spriden_cvt(convert_id, convert_pidm);
create index dupe_index17 on spriden_cvt(spriden_cvt_record_id, spriden_cvt_status);
--
create index merge_index1 on curcerr(curcerr_record_id, curcerr_table_owner);
create index merge_index2 on saturn.spriden(spriden_pidm, spriden_create_date);
create index merge_index3 on spriden_cvt(convert_pidm, spri-
den_upd_status,spriden_cvt_status, convert_change_ind DESC);
create index merge_index4 on spriden_cvt(convert_id, spri-
den_upd_status,spriden_cvt_status, convert_change_ind DESC);
create index merge_index5 on spbpers_cvt(convert_pidm,
spbpers_upd_status,spbpers_cvt_status);
create index merge_index6 on spraddr_cvt(convert_pidm, spraddr_upd_status,
spraddr_pidm, convert_atyp_code, spraddr_cvt_record_id);
create index merge_index7 on sprtele_cvt(convert_pidm, sprtele_upd_status,
sprtele_pidm, convert_tele_code, convert_atyp_code, sprtele_cvt_record_id);
create index merge_index8 on goremal_cvt(convert_pidm, goremal_upd_status, gore-
mal_pidm, convert_emal_code, goremal_cvt_record_id);
create index merge_index9 on curcerr(curcerr_record_id, curcerr_table_owner,
curcerr_legacy_value);
--
create index iden_merge1 on spriden_cvt(spriden_cvt_status);
--create index iden_merge2 on saturn.spriden(spriden_id, spriden_search_last_name,
spriden_search_first_name, spriden_search_mi, spriden_pidm);
--create index iden_merge3 on saturn.spriden(spriden_id, spriden_pidm);
create index iden_merge4 on saturn.spriden(spriden_search_last_name, spri-
den_search_first_name, spriden_search_mi, spriden_pidm);
--

 66

create index pers_merge1 on spbpers_cvt(spbpers_cvt_status);
--
create index addr_merge1 on spraddr_cvt(convert_pidm, spraddr_upd_status);
create index addr_merge2 on saturn.spraddr(spraddr_pidm, spraddr_atyp_code);
create index addr_merge3 on saturn.spraddr(spraddr_pidm, spraddr_atyp_code,
spraddr_status_ind);
create index addr_merge4 on spraddr_cvt(spraddr_cvt_status);
create index addr_merge5 on spraddr(spraddr_pidm, spraddr_atyp_code,
spraddr_street_line1, spraddr_street_line2, spraddr_street_line3, spraddr_city,
spraddr_zip, spraddr_status_ind);
create index addr_merge6 on saturn.spraddr(spraddr_pidm, spraddr_atyp_code,
spraddr_seqno);
create index addr_merge7 on saturn.spraddr(spraddr_pidm, spraddr_atyp_code,
spraddr_from_date, spraddr_to_date);
create index addr_merge8 on spraddr_cvt(spraddr_pidm, spraddr_atyp_code);
--
create index tele_merge1 on spraddr_cvt(spraddr_pidm, convert_atyp_code, con-
vert_seqno);
create index tele_merge2 on saturn.sprtele(sprtele_pidm, sprtele_tele_code,
sprtele_phone_number, sprtele_atyp_code, sprtele_addr_seqno);
create index tele_merge3 on sprtele_cvt(convert_pidm, sprtele_upd_status);
create index tele_merge4 on sprtele_cvt(sprtele_cvt_status);
create index tele_merge5 on saturn.sprtele(sprtele_pidm, sprtele_tele_code,
sprtele_phone_number);
--
create index emal_merge1 on goremal_cvt(goremal_cvt_status);
create index emal_merge2 on general.goremal(goremal_pidm, goremal_emal_code,
goremal_email_address);
create index emal_merge3 on general.goremal(goremal_pidm, goremal_preferred_ind);

**note: when creating indexes on real BANNER tables – make sure to remove them once this
process is complete or no longer used/needed.

You are now ready to begin using GPSynch

Keep in mind that you should be reviewing the <table_name>_UPD_STATUS
flags and if ERR is returned – then you should report on the error message
stored in CURCERR for the merge routine that produced the error. Most times
the errors are due to data problems (i.e. overlength address records, missing
crosswalks, etc.) and can be easily resolved. However, while these functions
have been tested and used in recent Banner implementations, there is always
the chance for a logic problem that would require the rework/defect correction of
one of these functions – and we should never be so complacent in a process that
is so complex.

 67

APPENDIX

BIG BANG Concept
Some Institutions decide that performing a “Big Bang” General Person conver-
sion will work best for them. Following this method; an Institution will convert ALL
General Person from ALL Legacy Systems at the beginning of the UDC imple-
mentation and then keep the changes from each legacy system synchronized
through GPSynch. The Legacy to Banner synchronization usually takes one of
two forms:

(1) Running GPSynch at some interval (nightly, weekly, monthly), then retir-
ing each systems GPSynch as each Banner system becomes fully LIVE
and legacy systems are shut down or become view only

(2) Perform a mass synchronization for that Legacy system to Banner in a
“just – in –time” fashion, just prior to that systems go-live.

This method/concept raises some issues on how we determine the Status of an
individual in Banner. Since only General Person data was loaded to Banner…
GPSynch will not have the ability to determine if an individual is a Vendor , an
Employee, a Student, an Alum.

In order to bridge this gap until systems are live and GPSynch can then deter-
mine an individual’s status in the other systems; We will use Business Rules and
Roles.

 68

First, we must define in Banner a Business Rule Process Code of “GPSYNCH”, a
description of “GPSynch Big Bang Enhancement”, leave the SYSTEM RE-
QUIRED unchecked, and default today’s date for “Start Date” (see screen shot
below):

 69

Next, we must define in Banner a Business Rule Code for each of the Systems
current and former components of the Merge String, leave the SYSTEM RE-
QUIRED unchecked, and default today’s date for “Start Date” (see screen shot
below):

 70

Now, we must define in Banner a Business Rule for each of the Business Rule
codes we defined for this Business Process. Below are examples.

Using Banner Functions in RULE:
These statements are using the same functions that GPSynch is already utilizing,
but these statements could be modified to look at whatever an Institution wishes
to use as the determinate (see Using Oracle External Tables next). (see
screenshots below) :

This rule is for a Current Employee that is Active.

 71

This rule is for a Former Employee that is Active.

Using Oracle External tables:
Since most Big Bang General Person conversions occur at the beginning of the
implementation, Banner will not have enough data yet for GPSynch to determine
the state of an individual in the system.

For example: General Person conversion has occurred, but the Vendors Table
(FTMVEND) has not been loaded, nor has the Human Resources Employee Ta-
ble (PEBEMPL), nor has the Student Tables (SARADAP, SGBSTDN,
SFBTERM), nor has the Advancement Tables (APBCONS, organization,
friends)… the process would need to gather the information from somewhere.

We can create Oracle external tables that read files of ID’s pulled from each sys-
tem. Each file would represent a type of individual from the system being pulled.
Human Resources System would provide a list of ID’s that are considered CUR-
RENT EMPLOYEES (CE). Student Information System would provide a list of
ID’s that are considered CURRENT STUDENTS (CS), similarly for Finance and
Advancement. (files could be given for FORMER for each system as well).

 72

Use of GORRSQL and external table:

create table gpsynch_pebempl_ext
(emp_id varchar2(9))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_merge_table_&&suffix
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('gpsynch_pebempl.csv')
)
 REJECT LIMIT UNLIMITED;

create table gpsynch_ftvvend_ext
(vend_id varchar2(9))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_merge_table_&&suffix
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('gpsynch_ftvvend.csv')
)
 REJECT LIMIT UNLIMITED;

create table gpsynch_sfbetrm_ext
(stud_id varchar2(9))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_merge_table_&&suffix
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('gpsynch_sfbetrm.csv')
)
 REJECT LIMIT UNLIMITED;

create table gpsynch_apbcons_ext
(alum_id varchar2(9))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER

 73

 DEFAULT DIRECTORY ext_merge_table_&&suffix
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('gpsynch_apbcons.csv')
)
 REJECT LIMIT UNLIMITED;

Sample Business Rules:

 74

 75

TROUBLESHOOTING

Receiving error “character buffer string too small”

CAUSE: The Oracle Directory no longer exists in the database.
ACTION: Redefine the Oracle Directory as the Oracle External table ex-
pects.

CAUSE: The Oracle Directory is no longer valid in the database or for OS.
ACTION: Redefine the Oracle Directory to the valid OS path.

CAUSE: The Oracle External Table Can’t be read.
ACTION: (a) Check to make sure the External table exists by doing a de-
scribe.
(b) Check that you can perform a SQL query of the external table.
(c) Check to ensure the CSV file is in the defined path for the Oracle direc-
tory, with appropriate permissions.
(d) Check to make sure the OS directory has appropriate permissions for
LOG file and BAD file writing.
(e) who_wins.csv was FTP’d in wrong mode and now contains ^M. FTP in
correct mode.
(f) if happens on SPBPERS conversion – then typically means
spbpers_vetc_file_number in who_wins.xls accidentally got changed to
spbpers_vetc_BANe_number - set back to correct column name

lengthy processing time:

CAUSE: Missing Indexes
ACTION: ensure necessary indexes exist and/or perform a rebuild of in-
dexes

CAUSE: insufficient UNDO tablespace
ACTION: increase tablespace

CAUSE: insufficient tablespaces
ACTION: increase tablespace and/or have DBA perform sizing and tuning.
See Action Line for FAQs on Oracle 10G tuning and new optimizer.

 76

UPD_STATUS meanings:

SPRIDEN_UPD_STATUS

CODE MESSAGE

ERR an error has occurred when attempt-
ing to merge. Use the record ID to
search CURCERR for the message and
make corrections to data.

LEN Overlength issues in Data need to
be resolved

m this record exactly matches the
Banner record so the process simply
flags the record as such - no ac-
tual merging occurs.

IBU the incoming legacy record was in-
serted as a new current record and
Banner current record is now an al-
ternate record.

I the incoming legacy record was in-
serted as is - no record in banner
had to be updated - usually occurs
for incoming name and id change re-
cords.

EIB the incoming data did not exactly
match any one record - however the
information exists already in some
form for the individual

IFL the incoming legacy record was in-
serted as a change record as BAN
won.

SPBPERS_UPD_STATUS

CODE MESSAGE

ERR an error has occurred when attempt-
ing to merge. Use the record ID to
search CURCERR for the message and
make corrections to data.

LEN Overlength issues in Data need to
be resolved

BU Banner record existed and was up-
dated

I Banner record did not exist so one
was inserted – spbpers_merge_string
and spbpers_who_wins will remain
null

SPRADDR_UPD_STATUS

CODE MESSAGE

ERR an error has occurred when attempt-
ing to merge. Use the record ID to
search CURCERR for the message and
make corrections to data.

LEN Overlength issues in Data need to
be resolved

 77

m this record exactly matches the
Banner record so the process simply
flags the record as such.
no actual merging occurs, however
the Banner record sequence number
is stored to ensure that telephone
numbers will be linked correctly.

BUs Banner spraddr_status_ind was up-
dated to the incoming legacy value.
no actual merging occurs, however
the Banner record sequence number
is stored to ensure that telephone
numbers will be linked correctly.

BAN Banner spraddr_status_ind of match-
ing address was not updated to the
incoming legacy value as the
who_wins rule was BAN.

BUI Banner record was updated to be
non-current for type (process uses
end_date if can otherwise the
status is set to inactive)
and incoming record loaded under
new sequence number. The Banner re-
cord sequence number is stored to
ensure that telephone numbers will
be linked correctly

I Incoming record was inserted as
is... no data contention with Ban-
ner.

SPRTELE_UPD_STATUS

CODE MESSAGE

ERR an error has occurred when attempt-
ing to merge. Use the record ID to
search CURCERR for the message and
make corrections to data.

LEN Overlength issues in Data need to
be resolved

mBU the incoming record telephone num-
ber was an exact match, however the
incoming data had additional data
to add to the record (status, pre-
ferred, comments, display on web)

mBL the incoming record telephone num-
ber was an exact match but not
linked to an address, however the
incoming data had additional data
to add to the record (status, pre-
ferred, comments, display on web)

I the incoming record was inserted as
is... no data contention with Ban-
ner. However, a new sequence number
could have been generated and is
stored in the temp table.

 78

GOREMAL_UPD_STATUS

CODE MESSAGE

ERR an error has occurred when attempt-
ing to merge. Use the record ID to
search CURCERR for the message and
make corrections to data.

LEN Overlength issues in Data need to
be resolved

mBU the incoming record email address
was an exact match, however the in-
coming data had additional data to
add to the record (extension,
unlisted, comments, international
access)

I the incoming record was inserted as
is... no data contention with Ban-
ner.

 79

Run Conver-

sion Program

NtoC

Call

Common

Matching

API

Match/

Suspense Yes

Flag and

Store re-

sults

Extract

Data

No

complete Con-

version Pro-

gram

NtoC

continue

Create

Temp

Table

SQLLoad

Data

 80

Run Conver-

sion Program

CtoI

Call

Merge

Function

Record

Flagged

M

?

Yes

Access

Who_wins

Perform

merge

Continue

No

Process

later

Normal Con-

version Pro-

gram

resumes

Verify

results

