Banner Oracle
Introduction to Oracle and SQL Training

Workbook

January 2006
Using Oracle for Banner Release 7x

l SUNGARD HIGHER EDUCATION

=

This documentation is proprietary information of SunGard Higher Education and is not to be copied, reproduced, lent or disposed of,
nor used for any purpose other than that for which it is specifically provided without the written permission of SunGard Higher
Education.

SunGard Higher Education

4 Country View Road
Malvern, Pennsylvania 19355
United States of America
(800) 522 - 4827

Customer Support Center website
http://connect.sungardhe.com

Distribution Services e-mail address

distserv@sungardhe.com

Other services

In preparing and providing this publication, SunGard Higher Education is not rendering legal, accounting, or other similar professional
services. SunGard Higher Education makes no claims that an institution's use of this publication or the software for which it is provided
will insure compliance with applicable federal or state laws, rules, or regulations. Each organization should seek legal, accounting and
other similar professional services from competent providers of the organization's own choosing.

Trademark

Without limitation, SunGard, the SunGard logo, Banner, Campus Pipeline, Luminis, PowerCAMPUS, Matrix, and Plus are trademarks or
registered trademarks of SunGard Data Systems Inc. or its subsidiaries in the U.S. and other countries. Third-party names and marks
referenced herein are trademarks or registered trademarks of their respective owners.

Notice of rights

Copyright © SunGard Higher Education 2004, 2007. This document is proprietary and confidential information of SunGard Higher
Education Inc. and is not to be copied, reproduced, lent, displayed or distributed, nor used for any purpose other than that for which it
is specifically provided without the express written permission of SunGard Higher Education Inc.

Table of Contents

SECtION A INTFOAUCTION ...ttt bbbttt ene e 8
OVBIVIBW ...ttt bbb bbb st h e e bbb bbb e bt b et et et st e b be e e e ne e 8
COUISE OVBIVIBW ...ttt stttk be ettt et e bt et e e bt e et e e nt e st e sbeesbeeseenbeenbenneesbeenbeas 9

Section B: Introduction to Oracle SQL and SQL*PIUS.........cccooiiiiiiiiiinnieeee e 10
OVEIVIBW ...ttt sttt b ettt b et e h e bt et e e b e e bt et e e b e ke e st e eme e nbeenb e st e e beaneenneenrs 10
] @] S = (=] 41T | £SO 12
Oracle’s Relational DAtabaseccocuiiiiieiiee e e e 13
0o PSSR 16
SQL BUTTEI <. ettt ettt ettt ettt ne e nneenrs 18
TADIES. . bbbttt bbb ns 21
Table REIAIONSNIPSoviiiiii e 22
NAMING CONVENTIONScuviitieiieeie ettt e e e e s e e steeraesreesteeseesseesseeneesreenreaneeas 23
LO00] 111311 01 J SRR PTPR T 24
DL 1 B) [[0 g = Y SO OR PSS 25
19110 PSSR PPRPRN 26
SQL*PIUS FOrMALLINGcveeteiieieeie ettt e e sreeaeaneesreenneeneenrs 27
FOrmatting COIUMINScuiiiie e 28
Listing and Resetting Column Display AttribULESccocveiiiiiiiciece e 33
Suppressing and Restoring Column Display AttribULES...........cocovviiiiiiiii 34
LiNESIZE ANU PAJESIZE. iceieieeeie ettt e ettt e s teete e s e s beebeaneesreeeeeneenneenees 35
Setting OULPUL 10 PAUSEviiiiiiicic e 36
SBIT CRECK . bbb 37

Section C: Introduction t0 the QUEKYc.ccuiiieiiee et 38
OVBIVIBW ...ttt bbbt b s ettt b e bbbt b st e st et e et et b et neenes 38
SBIECT SEAEIMENTS......eiieeeciie ettt ettt b e sbe e b e beenbeeneenrs 39
Selecting MUItIPIE COIUMNSc.veicc e nrs 40
SeIECHING 8 LIEIaAl.....c.eeeieiie s 41
DISTINCT ClAUSEeviteitiitieiieie ettt bbbttt bbb et be e s eneas 42
SeleCting Al COTUMNS.......ooiiiieee bbb 44
Column Heading ALIASES........cveiieieeiectiecie ettt nee e e nreeneenres 45
PSEUAO-COIUMNS.......oitii ittt sttt ettt r e be et e s et e e nbeaneenrs 46

1= | O 411! OO 48

Table of Contents (Continued)

Section D: Conditions and OPEIratorsSccveueiiereeieiiese e se e sre e e e eae e seeenee s 51
OVBIVIBW ...ttt bbbt b s e b b bbbt bt st e s et e e e b et b et e e enes 51
[070] 1o [{00 SRR 53
THE WHERE CIAUSE.......coiiiiitiitisi et bbbttt 54
COMPATISON OPEIALOIS.......euvetitisteete ettt sttt bbbt e e nn bbb ne s 55
[0 To o= L IO 1= 1 0] £SO 57
BETWEEN OPEIALON.......ceitiiiiiiiiiiiiiiesit et 58
IO 1= = (o S UP PSPPSR 59
LIKE OPEIALIOT ...ttt b et aneene s 60
N[O IO o= 1 o] S PRV P PSP 61
PreCRABNCE RUIES.......ooiiiiiie e ettt e et e b e e sreenrs 62
PAFAIMEBLETS ...ttt b et bbbt bbbt nr e rs 64
ST | O 1= o3 PSSRSO 67

Section E: Arithmetic EXpressions and FUNCHIONS...........cccooiiiiiiininiescecceee e 72
OVEIVIBW ...ttt sttt et ettt e et e et e e b e et e e e st e e sbe e aate e beeaReeenteeabeeenbeesteeenteennneenns 72
ATTTNMETIC EXPIESSIONSvviiiieiiieie ettt sttt e e e e st este e e s taesbeaseessaesseeneesreenseenee s 74
Order Of EVAIUALIONoiuiiiiec ettt st es 75
INUMEFIC FUNCLIONS ...ttt bbbttt ettt sb ettt ene s 77
ChAraCter FUNCHIONS.ottt sttt e b e b e nbeeneenrs 80
REGUIAT EXPIESSIONSvveuvietiesieeieeitestee e ee st e et e e et e s e e steestesse e taessesseesteenseaneesneeneenneenrs 86
FOrMAat MOGEIS ... ettt ettt sneers 89
DAL FUNCHIONS. ... vttt bbbttt b bbbt b et e bbb b et be e eneas 92
CONVEISION FUNCHIONS.....cviiiiiiie ettt sttt ettt b e sbe e e be e nbeeneeers 94
CONVETSION FUNCTIONS ...ttt bbbttt bbbt 95
GOUP FUNCEIONS ...ttt bbbt b bbb 103
L] 4 3 T=Tox TR SPRUSSR 105

Section F: NeSTING FUNCTIONS.........oiiiiiiiiee e 108
(@ = QY 1= PR SUPSR 108
NESHING CASE ...ttt e et e e be et e s re e te et e sbeesteeneesreesreenee e 109
NESTING COUNT ...ttt bbbttt nn bbb 111
NEStING DECODEc.ooiiieece ettt e et re e nre e 112
NESEING SUBSTR ...ttt e bbb bt 113
NESTING SUM ...t et a et e e s re e te et e s ba e beeneesreenreenee e 115
L] 4 1 T=Tox TSRS 116

S TTot o] T € B O - T LSRR 118
(@ = QY 1= PSSP 118
The WHERE CIAUSE......c.viiiciecc ettt et ra e ae e nns 119
ORDER BY ...ttt sttt ettt ettt e R naen et et e te e reetenreeneanaenen 120
Ordering DY POSITIONccviiiiieiic ettt re e nre e e s reenne s 122
GROUP BY ...ttt sttt et et et e e beeseesa e st et e tententestesteaneaneeneas 123
HAWING ..ottt bbbttt b e bt s et et et nbe b e be e b e ne e 125

S T CNBCK .ttt ettt ettt nnnnnnnn 127

Joins - Union, Union Al INTEISECE, IMIINUSveeeeeeee oot eae e e e 140

SUDGUETTES ... bbbttt b ettt ne e 145
Subqueries Returning MUIIple ValUEScoveiveieiieceee e 147
NESEEA SUDGUETTES ...ttt bbb 149
Correlated SUDQUETIESooieieiie et et ste e seesae e e sraenneeneesneenneas 150
DYNAMIC SQL ..ottt bbbttt e bbbt 152
SBIF CNECK . 153
Section I: Insert, Update and DEIELEccceoveiieiiiie i 156
OVBIVIBW ...ttt bbb bbb bbbt bbb et et e b et et e st besbeene s 156
[T o PSPPSR TP 158
MUIEE-TADIE INSEIT ... bbbt 159
INSert — Default IN ValUES.........c.oo i e e 161
L0 T = U= SRS 162
T T TP PP PP PRSP 163
DT .ttt bbbttt bbbt ne e 165
TEANSACTIONS. ...ttt et bt b e bt et e st e et e ese e sbe e beene e s beebeeneesreenns 166
SEIF CRECK .. 168
Section J: Creating and Maintaining Tables and INAEXEScccccvvvevivereiieiieere e 171
OVBIVIBW ...ttt bbb bbb bbbt bbb et et e b et et e st besbeene s 171
SCRBIMAS. .. ettt h bbbt ne e reene s 173
Data Definition Language ComMMAaNGSc.ccveiieieiieeneeieseeseesie e seesee e e sse e sneenaeens 174
Creating @ TabI ... 175
AREIING 8 TADIE ..o 177
Adding and RemoviNg COIUMNSccveiiiiiiiiee e 178
(@00 41511 - 1[I PUSSPRORN 180
Referential Integrity CONSIIAINTSc.ecveiieiiciece e 182
TTUNCATE. ..ottt ettt e bt e e bt e e s bt e e e kb e e e bb e e e abb e e e abe e e eabb e e e nbneennbneennneeens 184
INOEXES. ...ttt bbbttt bt b reeneenes 185
CoNCALENALEA INUEXES ... ecveeieeeiieie ettt e ste st e sbeenbeeneesreeteaneesreenneas 188
SEIF CNECK . e 190
Section K: Creating and Maintaining Other Database Objects............ccccceveviieivcieieenne. 193
OVBIVIBW ...ttt ettt b bbbt s s e bbb bbbt et e e st et et e nte b e sbeabenneenean 193
CrEALING VIBWS ...tttk bttt b bbbt bbbt et e bbb e st b e e ene s 194
)Y 1010)Y] 11O PR 197
SBOUEBINCES ...ttt bbbttt R bRt b e b n e ne s 198
Lo] Y2 USRSSPRSSN 200

ST CNBCK .ttt ettt ettt nnnnnn 202

Table of Contents (Continued)

Section L: SQL*Loader & External Tables..........cccvevviiieeiiiiiece e 205
OVBIVIBW ...ttt bbb bbbt bbbt bbbt e st et e b et et et et beene s 205
ReqUIred INPUL FIIES ... 207
1@] B 0T To [T G V0] - VOSSPSR 209
GENEIALING DALA. ..ot 210
Handling Blanks iN RECOMS.........ciuviiiiieiieiece et sta e nne e e 212
SQL*Loader EXAMPIES ..o 213
INVOKING SQLFLOAUEcuviiieiieeiectie sttt e st esre e be e e sneesreennennes 218
1@] B 0T To L] gl o 001U UPTR PRSI 219
EXIEINAL TADIES ..o bbb 222
SBIT CNECK ...ttt ettt b e bt reene s 223

Section M: SQL*PIUS REPOITINGccuviiiiiiiiiiieiierie e 225
OVEIVIBW ...ttt sttt b et he e bt e st e b e e ke et e e R e e bt e seeeb e e nbe e st e sbeenbeenbesreeabeennaas 225
sV 1] o] [T =T YRS 227
Suppressing Duplicate Values in Break Columns............cccooeiiiiiiiiiiiccccee e 228
Inserting Space When a Break Column's Value Changes..........cccceevvevviieivenesie e 229
Using Multiple Spacing TEChNIQUEScvoiviiiiiiiiiieeee e 230
Listing and Removing Break DefinitioNns.........ccocviieiiieiisieiiese e 232
Computing Summary Lines When a Break Column's Value Changes...........ccccoeeevervennn. 233
Computing Summary Lines at the End of the Reportccccevveveiievieeie e 235
Defining Page Titles and DIMENSIONScouiiiiiieieieiesie e 236
Displaying Column Values IN TILIEScooiieiiii i 238
Storing and Printing QUErY RESUIES............oooiiiiiiiiiice e 239
Saving the Commands t0 @ File.........ccoiveiieiiie e 240
HTIML REPOITS ..t b e 241
ST I T USRS SPRSRN 244

Section N: Answer Key for Self CheCk EXErCiISES........cooviiiiiiiiiiiicieeee e 245
(@A VT PSR SPORN 245
SECHION B — ANSWET KBYciiiiiciie ettt sttt ste e s te e te e e steesneeneesraeeens 246
SECHION C — ANSWET KBY ...ttt bbb 248
SECHION D — ANSWEL KEBY ...ttt sttt be e be e steesneeneesreenee s 251
SECHION E— ANSWET KBY ...ttt 257
SECHON F = ANSWEE KBYeiiiieiiciie ittt et et e et e s s e s beebesneesteenesneearaeneens 260
SECHION G — ANSWET KBY ...ttt sttt ene s 262
SECHON H — ANSWET KEBY ...ttt sttt be e te e sreesne e e nre e e 267
SECHION | = ANSWET KBY ...ttt bbbttt bbbt 274
SECHON J = ANSWET KBY ...ttt et et e st e s be et e s e e s teeaesneesteeneen 277
SECHION K = ANSWET KBY ...ttt bbbttt bbb 282

SECHION L — ANSWEL KEY ...ttt st be e te e steeaesneesta et 284

Table of Contents (Continued)

Section O: Table Descriptions and CONTENTS..........cecviieiieiieie e 288
OVBIVIBW ...ttt bbb bbbt bbbt bbbt e st et e b et et et et beene s 288
SWRADDR ...ttt ettt ettt b et b et e R n e e et e be et teebeere et et 289
SWBPERS ...ttt bbb bbbttt bbbt r e 290
SWRIDEN ...ttt sttt ettt b e be e s e s e s e e e besbesteabeareeneenenneas 291
SWRREGS ...ttt bbbt bbbttt bbb 292
SWRSTDN L.ttt sttt e et et et b e e be s e e s e ese et e tesbesteabeateeneaneeneas 294
SV R T EST .t bbbt bbbt e ettt bbb ene s 295
SWVCRSE ...ttt bbbt et e s e s e st et e benbesteebeereeneeneeneas 296
SWWV STDIN ..ttt bbbt b et bbbt bt bt ettt st ettt neeneeneas 297
SWVTERM ..ottt sttt b et e et e st besbesteeneeneeneenee e 298
TWRACCD ...ttt bbbttt bbbt bbbttt b bbbt 299
BLINTAT AV] 1SRRI 300

SeCtioN P: RElAted FlESooiveiiii e 301
L@ QY 1= ST UPSR 301
Create_eXercise_tableS.SOlvoiiiiiiee e 302
SWITABN.CLL ...t e e s e et e e s e e be e saaeebeeaneas 312

Y o (=T a o = | OO TR TR 313

Section A: Introduction

Lesson: Overview

«f Jump ta T0C

Introduction
This course introduces the user methods used to retrieve and manipulate data stored within an

Oracle relational database. SQL*Plus is the application, or tool, which will be used to access the
data.

Intended audience

SQL is used for all types of database activities by many types of users. However, in order for
attendees to receive the optimum benefit of this training, Sungard Higher Education recommends
that prospective students come from one of the following groups:

System administrators

Database administrators

Security administrators

Application programmers

Decision support system personnel

End users who have extensive contact with the database

Objectives
At the end of this course, participants will be able to
e Write statements to obtain information from the database
Write statements to generate reports
Manipulate data and process transactions
Create and modify data tables
Write programs in which SQL statements are enclosed within procedural statements
(such as IF statements)
e Understand the various types of Oracle objects that can be stored in a database

Section contents

L@ YT YT, R 8
COUSE OVEIVIBW ...t eee ettt et e e et e s ettt e e e s s easeas b aeeeeteeesssa s b e b aeeeeeesssasas s b aeeeeseeessnasbebaeeeeeens 9
© SunGard 2004-2007 Introduction to Oracle

Page 8

Section A: Introduction

Lesson: Course Overview

< Jump ta 100

Overview

This course will instruct attendees as to how SQL (Structured Query Language) is used to
provide information and update data. The goal of this manual is to help developers tackle real
world problems faced every day (at least those problems that can be solved with software). SQL
and the rest of Oracle’s products offer the potential for incredible development productivity.

This workbook is filled with sample code fragments, as well as complete application
components, which can be applied immediately to a situation. Using this workbook, it is
Sungard Higher Education’s intent to guide participants through the analytical process to develop
efficient, maintainable code to successfully support the development and maintenance of an
Oracle database.

© SunGard 2004-2007 Introduction to Oracle
Page 9

Section B: Introduction to Oracle SQL and
8l SQL*Plus

Lesson: Overview

< Jump to 100

Introduction
This section provides a basic discussion of the components of Oracle SQL and SQL*Plus.

Objectives

This section will examine the following:
o Definition of a relational database

Definition of a schema

Object names

Character sets

Simple and compound symbols

Login

Tables

Columns

DUAL table

Data Dictionary

SQL Buffer

© SunGard 2004-2007 Introduction to Oracle
Page 10

- Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Overview (Continued)

< Jump to 100

Section contents

L@ LT T OSSR 10
1O] I - 1<) 1= £ RPRP 12
Oracle’s Relational DAtabasec.eiveieiieiiei e sre s 13
0o 1o SRS 16
ST @ I U i] PSSR 18
TADIES. ..t bbbttt bt re b e 21
Table REIAIONSNIPS ..ot 22
NAMING CONVENTIONSc.viiiieiiicie ettt et s e st e e e st e e be e b e sbeesteennesreenreaneeas 23
LO0] 11301 01T 24
Data DICLIONAIY ...vecviiieicie ettt e e e te e e s aeesbeaneesreenteeneeaneeneas 25
1911 RSSO PSSR 26
SQL*PIUS FOrMALLINGccveiiviiieiieie et sre e n e e s e e saesneenrs 27
FOrmatting COIUMINS ..ot 28
Listing and Resetting Column Display AttribDULEScccveiiiiiiiicecece e 33
Suppressing and Restoring Column Display AttribULES............ccocoiiiiiiiii 34
LiNESIZE QN0 PAQESIZE.eciieieeeie ettt ettt e s te et e e neesreene e e e nreenneas 35
Setting OULPUL 10 PAUSEcviiiiiiieieee e 36
SBIF CNECK .t 37
© SunGard 2004-2007 Introduction to Oracle

Page 11

- Section B: Introduction to Oracle SQL and
Sl SQL*Plus

Lesson: SQL Statements

«f Jump ta 100

Overview

This training manual contains a list of common SQL (Structured Query Language) statements.
SQL is used to create, store, modify, retrieve, and manage information in any Oracle database.
This course will address how SQL is used within an Oracle database.

About SQL

SQL is a set of commands governed by the American National Standards Institution (ANSI) and
the International Standards Organization (1SO). Many of the commands in this manual are a
superset of the ANSI standard which will be used in the environment called SQL*Plus.

As of Oracle release 9i Version 2, Oracle has adopted the SQL99 standard of the SQL language.

For a complete listing of all SQL and SQL*Plus commands, please refer to the Oracle Database
SQL Reference and SQL*Plus reference manuals. These books and more are available in the
Oracle Database Documentation Library at the Oracle Technology Network website
http://www.oracle.com/technology/documentation/database10gR2.html.

© SunGard 2004-2007 Introduction to Oracle
Page 12

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Oracle’s Relational Database

< Jump ta [0C

What is a relational database?

A relational database is a collection of data items which can be accessed or reassembled in many
different ways without having to reorganize the tables.

For instance, as a developer, you may be asked to create two reports:
e A report that lists a student 1D, Name, Birth Date, Social Security number, and home
address for a group of students
e Arreport that lists a student ID, Name, Social security number, and courses being taken
during the current term

Although these are two different reports, they do share some things in common. You are trying
to access the Student ID, Name, and Social Security number for both.

Data access

Relational databases recognize the fact that data needs to be accessed several ways in order to be
valuable.

What is a schema?
A schema is a collection of related objects. A schema is owned by a database user and has the

same name as the user. Every database object that is created by a user then becomes part of the
user’s schema.

This will be discussed in more detail in Section J.

Oracle object names
As with any language, there are conventions used in naming objects. The following rules govern
naming objects.
e Names must be 1 to 30 characters in length
Names cannot contain quotation marks or special characters
Names are not case sensitive**
Each name must begin with an alphabetic character
A name cannot be an Oracle reserved word
A name cannot be the duplicate of another database object owned by the same user

© SunGard 2004-2007 Introduction to Oracle
Page 13

% SQL*Plus

Section B: Introduction to Oracle SQL and

Lesson: Oracle’s Relational Database
Continued

«d Jump ta T0C

Object Naming (continued)

SQL is not a case-sensitive language. Uppercase and lowercase letters are treated the same way
with the exception of literal strings (alphanumeric characters surrounded by single quotes) and
character variables (variables designated with the "&" prefix).

Although SQL is case-insensitive, stick to using UPPERCASE for keywords and reserved words.
It is much easier to read.

Type Character
Letters** A-Z, a-z
Digits 0-9

Symbols _ (underscore)

**Qbjects can generally be created and referenced without regard to case. However, object
names are stored in the internal data dictionary in UPPER CASE and when selecting from data
dictionary views the object name must be referenced in UPPER CASE.

© SunGard 2004-2007 Introduction to Oracle

Page 14

Section B: Introduction to Oracle SQL and
SQL*Plus

Oracle’s Relational Database
Continued

Lesson:

«f Jump ta T0C

SQL Special Characters

The standard symbols exist in Oracle SQL for elementary arithmetic functions. There are other
symbols that have special meaning when writing SQL statement in Oracle.

Simple and compound symbols

Symbol Description

+ Addition symbol

- Subtraction symbol

* Multiplication symbol

/ Division symbol

= Equality symbol

< Less than symbol

> Greater than symbol

; Statement terminator

% Multi-byte wild card symbol

_ Single byte wild card symbol (underscore)
<>and != Not equals

| Concatenation operator

<=and >= Relational operator

-- Single line comment indicator (dash dash)
/* and */ Multi-line comment block delimiters

& Parameter indicator

: Bind Variable indicator

@ Run statement in SQL*Plus

) Override precedence

© SunGard 2004-2007

Introduction to Oracle
Page 15

Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Login

«d Jump ta TOC

Logging in
To retrieve and manipulate data, first connect to the database.

There are two ways to connect to the SQL*Plus environment.

Login from Unix/VMS prompt
At the operating system prompt, type SQLPLUS. Then enter a username and password. After
entering a password, the system goes to the SQL prompt:

prompt$ SQLPLUS

SQL*Plus: Release 9.2.0.1.0 - Production on Mon Dec 19 11:55:23 2005
Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.
Connected to:

Oracle9i Enterprise Edition Release 9.2.0.6.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.6.0 — Production

SQL>

Your output may differ from what is shown here, depending on which releases of the software
you have installed.

© SunGard 2004-2007 Introduction to Oracle
Page 16

- Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Login (Continued)

< Jump to TOC

Login from PC

The SQL*Plus program may be access via several options. It may have been created as an icon
on your desktop, or go to Start > Programs - {Oracle Software — name here may vary} ->
Application Development - SQL*Plus.

When logging in via client server, the prompt may also include a request for a database (SID) or

host string:
User Name: |scot |
Password: r*m |
Host String: I |
[] Cancel |

Contact the database administrator for proper database names (SID).

Release numbers

Note the Oracle release numbers. They are normally overlooked in day to day activity, but when
seeking assistance from SunGard Higher Education or the Oracle Corporation, undoubtedly these
version numbers will be requested by the contact person.

© SunGard 2004-2007 Introduction to Oracle
Page 17

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: SQL Buffer

< Jump ta [0C

SQL buffer

SQL*Plus will store the last command in the SQL buffer. Use the following commands to edit
statements stored in the buffer.

Command Abbreviation Purpose
APPEND text a text Add text to the end of a line
CHANGE/old/new c/old/new Change old to new in line
CHANGE/text c/text Delete text from a line
CLEAR BUFFER CL BUFF Delete lines
CLEAR SCREEN CL SCR Clear the screen
DEL None Delete current line
INPUT | Add one or more lines
LIST L List all lines in buffer
LISTn In List a specific line
LISTmn Imn List a range of lines

Bypass the Buffer

At the SQL> prompt, type the keyword EDIT. This action will open the system editor. Save the
file and exit the editor in the manner defined by the editor to return to the SQL> prompt.

If you just type “edit” at the SQL prompt, it will edit the last statement issued. This statement
will be saved in a file called afiedt.buf. When you save and exit the editor, the corrected
statement will appear as the new current statement.

If you save the file to another name from the editor, it will not appear as the current statement in
SQL buffer. You will have to run it explicitly as outlined below.

Alternately, save the current statement from the SQL prompt by typing:

SQL> Save <file_name> { replace }
Use the keyword replace if the file already exists. The file will automatically be saved with a
.sql extension.

To execute the commands specified in the file, type one of these command lines (they are
synonymous). SQL*Plus assumes the file has an extension of .sql. If the files have an alternate
extension, supply it with the file name.

SQL> START <file_name >
SQL> @<File_name >
© SunGard 2004-2007 Introduction to Oracle

Page 18

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: SQL Buffer (Continued)

«f Jump to T0OC

View editor settings

In order to view the editor settings, type the keyword DEFINE at the SQL prompt.
SQL> DEFINE
DEFINE _CONNECT_IDENTIFIER = "TRNG"™ (CHAR)
DEFINE _SQLPLUS_RELEASE = ''902000100" (CHAR)
DEFINE _EDITOR "Notepad" (CHAR)
DEFINE _O_VERSION "Oracle9i Enterprise Edition Release
9.2.0.6.0 - Production
JServer Release 9.2.0.6.0 - Production” (CHAR)
DEFINE _O RELEASE = "'902000600" (CHAR)

New variables in Oracle 10g:
SQL> define

DEFINE _DATE = "30-DEC-05" (CHAR)
DEFINE _CONNECT_IDENTIFIER = *"dwl10g"™ (CHAR)
DEFINE _USER = "TRAINO1" (CHAR)
DEFINE _PRIVILEGE = """ (CHAR)

DEFINE _SQLPLUS_RELEASE = '1002000100" (CHAR)

DEFINE _EDITOR "Notepad" (CHAR)

DEFINE _O_VERSION "Oracle Database 10g Enterprise Edition Release
10.2.0.1.0 - Production

With the Partitioning, OLAP and Data Mining options" (CHAR)

DEFINE _O RELEASE = '"1002000100" (CHAR)

Change the default editor

To change the default editor, use the keyword DEFINE_EDITOR:
SQL> DEFINE_EDITOR = <editor name>

Include the full path of the editor on Windows machines if the path is not part of your
environment settings.

© SunGard 2004-2007 Introduction to Oracle
Page 19

. Section B: Introduction to Oracle SQL and
M SOL*Plus

Lesson: SQL Buffer (Continued)

o JumptoT00

Setting the SQL Prompt

When working with multiple databases, it may be desirable to know which database you are
connected to. This can be done in version 9i Release 2 using the new
_CONNECT_IDENTIFIER variable. Issue the following command:

SQL> SET SQLPROMPT "&_ CONNECT_IDENTIFIER > *

Your prompt will now look like (assuming TRNG is the database you connected to):
TRNG>

Note: if you connect to another database from the SQL prompt, it will not automatically update
the prompt, you will need to reissue the SET SQLPROMPT command.

Running an SQL statement

To execute an SQL statement that you typed into the buffer, terminate it with a semicolon (;) and
it will automatically run. To re-run the statement in the buffer or execute the current statement
after editing, use the / (forward slash).

© SunGard 2004-2007 Introduction to Oracle
Page 20

Section B: Introduction to Oracle SQL and
M SOL*Plus

Lesson: Tables

«d Jump ta TOC

Tables

A table is the basic structure to hold user information. Think of a table as a spreadsheet made up
of columns and rows. Column definitions fall under three categories: character, numeric, and
date data types.

Table definition

To view the definition of a table, use the DESC command (abb. for describe):
SQL> DESC <table_ name>

Table examples

Many of the code examples and exercises in this manual use tables designed for this course.

Take a moment to become familiar with these tables using the DESC command:
SQL> DESC swriden

SQL> DESC swbpers
SQL> DESC swraddr
SQL> DESC swvcrse
SQL> DESC swrregs
SQL> DESC swrstdn
SQL> DESC swrtest
SQL> DESC swvstdn
SQL> DESC swvtele
SQL> DESC swvterm
SQL> DESC twraccd
SQL> DESC twvdetc
© SunGard 2004-2007 Introduction to Oracle

Page 21

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Table Relationships

< Jump ta [0C

Diagram
Person
Baclground
SWRIDEH SWEADDE SWEPERS
Identificataom T able A ddress Table Parson Profile Table
Student
Info
{ SWERTEST]
WV CRSE
SAT Test Table
=
Course Walidation Table
[SWEEE =3]
CourselfiGrads SWVTERM
Eegistration Table
Term Validation Table
THEACCD
TWVDETC
A ccourt Table
_ Detaill Code Wahdation Tahle
SWESTDN
SWWESTDH

Stadent Standing Table

Student Standimg Validation T able

© SunGard 2004-2007 Introduction to Oracle
Page 22

Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Naming Conventions

< Jump to 100

Characters
The first character in the name of all Banner tables identifies the system that owns it.

The second character is system specific and identifies the application module to which the table
refers.

The third character identifies the type of table: B(ase), R(epeating), or V(alidation) table.

The fourth through seventh positions represent a four-character description for the table.

Example
For example: SWRIDEN
e S(tudent)
e W (client-developed object)
e R(epeating table)
o IDEN(tification)

© SunGard 2004-2007 Introduction to Oracle
Page 23

- Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Columns

< Jump to TOC

Tables are made up of columns. The number of columns in a table can range from 1 to 1000.
Each column is defined using a specific data type.

The following are the most common data types:

VARCHAR2(n)

Variable length character string having a maximum size n of 4000.
CHAR(n)+

Fixed length character data having a maximum size n of 255.
VARCHAR++

Currently synonymous with VARCHAR2 data types.
CLOB/BLOB/BFILE+++

Variable length data up to 4 gigabytes.

NUMBER(p,s)

Numeric data type having a precision p and scale s.

DATE

Valid dates range from January 1, 4712 BC to December 31, 9999 AD.

+ The CHAR(n) data type is a backwards compatible data type associated with DB2
applications.

++ It is highly recommended that this data type never be used. Oracle may change its definition
in a future release.

+++ Note: BFILES are pointers to external files. The files themselves should not exceed 4 Gb.

© SunGard 2004-2007 Introduction to Oracle

Page 24

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Data Dictionary

< Jump ta [0C

Definition
The data dictionary is a collection of views containing information concerning the database,
database objects, users, and events. It is also called "meta data."”

To access the views contained in the data dictionary, type the following:
SQL> SELECT * FROM DICTIONARY;

Importance
The contents of the dictionary tables and views will be explored as they relate to the topics of
discussion. It is highly recommended that users become familiar with the contents of the data
dictionary. A great deal of information concerning the Banner database may be gleaned from
the data dictionary.

Dictionary views
The dictionary views can be divided into three categories: ALL, USER, and DBA views.
¢ Dictionary view names beginning with "USER" contain information about the database
objects and events owned by a schema (user)
o Dictionary view names beginning with "ALL" contain information about the database
objects to which the user has access

Refer to an Oracle Server Reference manual for a complete listing of data dictionary views and
their descriptions.

Selectable views

The following are data dictionary views that can be selected to learn more information about
objects in the database (each have a USER_and ALL _ equivalent):

USER_TABLES USER_TAB_COLUMNS
USER_TAB_COMMENTS USER_COL_COMMENTS
USER_VIEWS USER_INDEXES

USER_OBJECTS USER_SOURCE
USER_CONSTRAINTS USER_CONS_COLUMNS

>

e o6 o o o
* & o o

List table information

To list all of the table information within your schema, type the following:
e SELECT * FROM USER_TABLES;

A printed listing of the contents of the tables used in this class may be found in Section O.

© SunGard 2004-2007 Introduction to Oracle
Page 25

- Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: DUAL

«d Jump ta TOC

DUAL table

DUAL is a table automatically created by Oracle along with the data dictionary. Itis in the
schema of the user SYS, but is accessible to all users by the name DUAL. It has one column,
DUMMY, defined to be a VARCHAR?Z2, and it contains one row with the value of "X".

Selecting from DUAL

Selecting from DUAL is useful for computing a constant expression with the SELECT
command. Because it has only one row, the constant is only returned once. Since all select
statements must have a FROM, the DUAL table satisfies the syntax requirements.

The following example obtains the current system date:
SQL> SELECT SYSDATE FROM DUAL;
SYSDATE
19-DEC-05
This examples show how to do a calculation with the dual table:

SQL >select (3 * 12) / 7 my_calc from dual;

(3*12)/7

5.14285714

© SunGard 2004-2007 Introduction to Oracle
Page 26

Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: SQL*Plus Formatting

<d Jump ta 100

SQL*Plus Formatting

SQL*Plus makes some assumptions about how to display the data returned from your query.
You may alter the aspects of this display by using some built in SQL*Plus commands.

This section will explore:
e Alternate column headings
e Larger line and page sizes
e Showing only one page of data at a time

Additional formatting techniques can be found in Section M — SQL*Plus reporting.

© SunGard 2004-2007 Introduction to Oracle
Page 27

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Formatting Columns

«f Jump ta 100

COLUMN command

Through the SQL*Plus COLUMN command, you can change the column headings and reformat
the column data in your query results.

Changing column headings

SQL*Plus uses column or expression names as default column headings when displaying query
results. Column names are often short and cryptic, however, and expressions can be hard to
understand. You can define a more useful column heading with the HEADING clause of the
COLUMN command in the format shown below:

COLUMN column_name HEADING column_heading

The new headings will remain in effect until you enter different headings, reset each column'’s
format or exit from SQL*Plus.

EXAMPLE: Enter the following line:
SQL> COLUMN DETC_CODE HEADING "Category"®
Quotation marks

To change a column heading to two or more words, enclose the new heading in single or double
quotation marks when you enter the COLUMN command. To display a column heading on
more than one line, use a vertical bar (]) where you want to begin a new line.

EXAMPLE: Enter the following line:
SQL> COLUMN BILL_DATE HEADING "Billing]Date”

Display query
Type in the rest of the column headings so that the query displays:

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS 120
200402 Erickson, Ralph 21-MAY-05 DORM 1000
200501 Brown, Julie 21-MAY-05 BOOK 300.2
200501 Brown, Julie 21-MAY-05 TUIT 1500.5
200501 Brown, Julie 28-MAY-05 BKSC 700
200501 Erickson, Ralph 21-MAY-05 MEAL 900
© SunGard 2004-2007 Introduction to Oracle

Page 28

Section B: Introduction to Oracle SQL and
]l SQL*Plus

Lesson: Formatting Columns (Continued)

< Jump to TOC

Underline character

To change the character used to underline each column heading, set the UNDERLINE variable
of the SET command to the desired character.

EXAMPLE: Enter the following:
SQL> SET UNDERLINE =

SQL> /

SQL*Plus displays the following results:

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS 120
200402 Erickson, Ralph 21-MAY-05 DORM 1000
200501 Brown, Julie 21-MAY-05 BOOK 300.2
200501 Brown, Julie 21-MAY-05 TUIT 1500.5
200501 Brown, Julie 28-MAY-05 BKSC 700
200501 Erickson, Ralph 21-MAY-05 MEAL 900

200501 Erickson, Ralph 21-MAY-05 CRED 400

Now change the underline character back to a dash:
SQL> SET UNDERLINE "--

Enclose the dash in quotation marks; otherwise, SQL*Plus interprets the dash as a hyphen
indicating that you wish to continue the command on another line.

© SunGard 2004-2007 Introduction to Oracle
Page 29

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Formatting Columns (Continued)

< Jump to T0C

Formatting your columns

Although we now have customized our headings for the report, we also want to change the
appearance of the data itself for the report.

The COLUMN command identifies the column you want to format and the model you want to
use, as shown below:

COLUMN collumn_name FORMAT model

The format model will stay in effect until you enter a new one, reset the column's format, or exit
from SQL*Plus.

Formatting a character column

The default display width for CHAR and VARCHAR2 (VARCHAR) values is the width defined
for the column in the database. The default display can be changed using the COLUMN
command. Use a format model consisting of the letter A (for alphanumeric), followed by a
number representing the width of the column in characters.

You may notice that the Category title is truncated and that the Name column is taking up a lot
of space. First, we will decrease the size of the Name column, and then increase the length of the
TWRACCD_DETC_CODE column.

To set the width of the column NAME to 25 characters, enter:

SQL> COLUMN NAME FORMAT A25

To set the width of the column TWRACCD_DETC_CODE to eight characters and rerun the
current query, enter:

SQL> COLUMN TWRACCD_DETC_CODE FORMAT A8
SQL> /

© SunGard 2004-2007 Introduction to Oracle
Page 30

Formatting Columns (Continued)

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS 120
200402 Erickson, Ralph 21-MAY-05 DORM 1000
200501 Brown, Julie 21-MAY-05 BOOK 300.2
200501 Brown, Julie 21-MAY-05 TUIT 1500.5
200501 Brown, Julie 28-MAY-05 BKSC 700
200501 Erickson, Ralph 21-MAY-05 MEAL 900

200501 Erickson, Ralph 21-MAY-05 CRED 400

© SunGard 2004-2007
Page 31

Introduction to Oracle

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Formatting Columns (Continued)

< Jump to T0C

Formatting a number column

Use number format models to add commas, dollar signs, angle brackets (around negative values),
and/or leading zeros to numbers in a given column. You can also round the values to a given
number of decimal places, display minus signs to the right of negative values (instead of to the
left), and display values in exponential notation.

To display AMOUNT with a dollar sign, a comma, and the number zero instead of a blank for
any zero values, enter the following command:

SQL> COLUMN AMOUNT FORMAT $99,990.00

Now rerun the current query:
SQL> /

SQL*Plus displays the following output:

Billing

Term Name Date Category Amount

200402 Erickson, Ralph 21-MAY-05 LABS $120.00
200402 Erickson, Ralph 21-MAY-05 DORM $1,000.00
200501 Brown, Julie 21-MAY-05 BOOK $300.20
200501 Brown, Julie 21-MAY-05 TUIT $1,500.50
200501 Brown, Julie 28-MAY-05 BKSC $700.00
200501 Erickson, Ralph 21-MAY-05 MEAL $900.00
200501 Erickson, Ralph 21-MAY-05 CRED $400.00
200501 Erickson, Ralph 25-MAY-05 CASH $800.00

© SunGard 2004-2007 Introduction to Oracle

Page 32

- Section B: Introduction to Oracle SQL and
Ml SQL*Plus

Lesson: Listing and Resetting Column
Display Attributes

«f Jump ta 100

List a column’'s current attributes

To list the current display attributes for a given column, use the COLUMN command followed
by the column name as shown below:

SQL> COLUMN [column_name]

List all columns' current attributes

To list the current display attributes for all columns, enter the COLUMN command with no
column names or clauses after it:

SQL> COLUMN

Reset a column to default values

To reset the display attributes for a column to their default values, use the CLEAR clause of the
COLUMN command as shown below. Do not clear the columns now or you will undo the
previous steps.

SQL> COLUMN [column_name] CLEAR

Reset all columns to default values
To reset all columns' display attributes to their default values, enter the following command:

SQL> CLEAR COLUMNS

You may wish to place the command CLEAR COLUMNS at the beginning of every command
file to ensure that previously entered COLUMN commands will not affect queries you run in a
given file. Also add to the file any column commands that are specific to your query.

© SunGard 2004-2007 Introduction to Oracle
Page 33

Section B: Introduction to Oracle SQL and
Ml SQL*Plus

Lesson: Suppressing and Restoring Column
Display Attributes

< Jump to [0C

Suppress a column’s display attributes

You can suppress and restore the display attributes you have given a specific column. To
suppress a column's display attributes, enter a COLUMN command in the following form:

COLUMN collumn_name OFF

Restore defined attributes

The OFF clause tells SQL*Plus to use the default display attributes for the column, but does not
remove the attributes you have defined through the COLUMN command. To restore the
attributes you defined through COLUMN, use the ON clause:

COLUMN collumn_name ON

© SunGard 2004-2007 Introduction to Oracle
Page 34

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Linesize and Pagesize

«f Jump ta 100

Adjusting Linesize

Linesize is the number of characters that can be presented on each line. When SQL*Plus cannot
fit all columns across the screen, it will wrap them on to additional lines. There is a parameter
you can set in SQL*Plus to adjust the width of data presented on the screen. However, screens
are only so large, so while you may continue to increase the linesize, SQL*Plus will only show
so much data on the screen.

The default linesize is 80 characters. The maximum linesize is 32767.

Other SQL tools may allow you to increase the linesize such that you can scroll back and forth
without wrapping.

When sending out put to a file, you can increase the linesize beyond what SQL*Plus will show,
and the data will be presented properly in the file even if it does not display on the screen

properly.
SQL> SET LINESIZE 100

Adjusting Pagesize

Pagesize is the number of lines presented per logical page or screen or number of lines between
repeats of column headings. Pagesize can be adjusted to show more lines of data in between
column headings. By default, and based on a carry-over from older, smaller screen days, the
default pagesize is only 14 lines per page. (In Oracle 10g the default pagesize has been increased
to 24.) To show more data between repeats of column headings, increase the pagesize parameter.

SQL> SET PAGESIZE 40

Pagesize can also be increased substantially if the data will be written to a file. If you want to
write data to a file and then load it into a spreadsheet, you may not want to repeat column
headings at all. Pagesize can be set up to 50000.

© SunGard 2004-2007 Introduction to Oracle
Page 35

Section B: Introduction to Oracle SQL and
SQL*Plus

Lesson: Setting output to Pause

«f Jump ta 100

Adjusting Display of Data

When you select large amounts of data in a query such as the “SELECT * FROM dictionary”
above, the data just scrolls by on the screen without stopping until all the data has been
displayed. Screen buffers do not always store enough data for you to scroll backwards and see
the beginning of the data from your query. You can adjust SQL*Plus to only display one “page”
at a time (note this is the logical page defined by pagesize, above).

There are two commands that should be set when you want to pause the display of data so that it
does not scroll off the screen. They are SET PAUSE ON and SET PAUSE <’string of
characters’>.

The SET PAUSE ON command turns the pausing of data per logical page on. If the second
command is not issued, the screen will pause waiting for you to hit the ENTER key to advance
the data. One feature of the Pause command is that it will pause even before displaying the first
logical page of data. Without a prompt, you may not know whether the query has data ready for
you to view, or if it is still processing your request. You can add a prompt to the Pause command
to let you know when data is ready to display. You issue the second SET PAUSE command and
provide a string that will appear when another page of data is ready to display.

SQL> SET PAUSE ON

SQL> SET PAUSE “Press any key to continue..”
SQL> 1* select * from swriden;

Press any key to continue...

SWRIDEN_PIDM SWRIDEN_1 SWRIDEN_LAST NAME SWRIDEN_FIRST_N SWRIDEN_MI
S SWRIDEN_A
SWRIDEN_USER_ID SWRIDEN_DATA_ORIGIN

12340 857834585 Brown Julie K
20-DEC-05
TRAIN_ORA101 TRAINING

12340 876536782 Brown Julie K
1 20-DEC-05

TRAIN_ORA101 TRAINING

To turn pausing off, issue the SET PAUSE OFF command.

© SunGard 2004-2007 Introduction to Oracle
Page 36

- Section B: Introduction to Oracle SQL and
l SQL*Plus

Lesson: Self Check

< Jump ta 100

Directions
Use the information from this section to complete the following exercises.

Exercise 1

Using the login and database information provided by the instructor, make sure you can log into
SQL*Plus on your computer.

Exercise 2

Issue the following statement to view the tables that you own:
SELECT * FROM USER_TABLES;
If no records are retrieved, contact the instructor.

Exercise 3

Issue the following statement to view the tables that you have permission to view (if the list is
long and scrolls off the screen, consider setting PAUSE on with an appropriate pause message):
SELECT * FROM ALL_TABLES;

© SunGard 2004-2007 Introduction to Oracle
Page 37

Section C: Introduction to the Query

Lesson: Overview

< Jumpto T0C

Introduction
This section provides an introduction to SQL queries.

Objectives

At the end of this section, participants will be able to write queries that perform the following:
o Select all or specific columns
e Remove duplicate rows
e Create substitute column headings

Section contents

L@ YT YT, 38
Ye] (=10] =L (=10 T £ 39
Selecting Multiple COIUMNSciiiie s 40
Selecting @ LIEral........c..ooiiiicc e e e 41
(D] S I LN (O O F- T 1Y R 42
Selecting Al COIUMNS........ooiie ettt e e e nteeneears 44
Column Heading ALTBSES..........ciiiieieiee bbbt 45
oS =TU o (o R oto] [0 4 OO 46
7= L O 1] 48
© SunGard 2004-2007 Introduction to Oracle

Page 38

Section C: Introduction to the Query

Select Statements

< Jump ta 100

Overview

The SELECT statement retrieves rows from one or more tables. It pulls all rows, or adds

conditions so that only the information needed is retrieved.
SELECT <column name> <constant> FROM <table name>;

The purpose of a SELECT statement is to display columns and rows from one or more tables.
This is also known as querying the database.
Examples
SQL> SELECT swriden_last _name
FROM swriden;

SWRIDEN_LAST_NAME

Brown

Erickson
Erickson
Johnson

Jones
Jones-Erickson
Smith

White

SQL> SELECT swriden_id
FROM swriden;

SWRIDEN_ID
157834585
176536782
692568211
578549991
3539543
145672112
145672112
5829934
543853339

© SunGard 2004-2007 Introduction to Oracle
Page 39

Section C: Introduction to the Query

Lesson: Selecting Multiple Columns

< Jump ta 100

Separator
To select multiple columns, separate them by a comma.

Example

SQL> SELECT swriden_last _name, swriden_Ffirst name
FROM swriden;

SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME
Brown Julie

Brown Julie

Erickson Ralph

Erickson Susan

Johnson Peter

Jones Sandy
Jones-Erickson Sandy

Smith Robert

White Nancy

© SunGard 2004-2007 Introduction to Oracle

Page 40

Section C: Introduction to the Query

Lesson:

< Jumpto T0C

Literals

Selecting a Literal

Selections do not have to be on a column from a table or database object. Select a literal if it is

enclosed in quotes.

Example

SQL> SELECT "Student Name is", swriden_Ffirst_name, swriden_last _name
FROM swriden;

"STUDENTNAMEIS® SWRIDEN_FIRST_NAME SWRIDEN_LAST_NAME

Student Name
Student Name
Student Name
Student Name

is Julie
is Julie
is Peter
is Robert

Brown
Johnson
Smith

© SunGard 2004-2007

Page 41

Introduction to Oracle

Section C: Introduction to the Query

Lesson: DISTINCT Clause

«f Jump to 100

DISTINCT

The DISTINCT clause specifies that duplicate rows should be removed before the rows are
returned. A row is considered a duplicate of another if every value for each column of the
SELECT clause matches that of another row(s).

Note that distinct applies only to the columns in the select clause and not all the columns in the
table.

Without DISTINCT clause

SQL> SELECT swriden_last _name
FROM swriden;

SWRIDEN_LAST_NAME

Brown

Erickson
Erickson
Johnson

Jones
Jones-Erickson
Smith

White

With DISTINCT clause

SQL> SELECT DISTINCT swriden_last_name
FROM swriden;

SWRIDEN_LAST_ NAME
Brown

Erickson

Johnson

Jones
Jones-Erickson
Smith

White

© SunGard 2004-2007 Introduction to Oracle
Page 42

Section C: Introduction to the Query

Lesson: DISTINCT Clause (Continued)

< Jumpto T0C

Without DISTINCT

SQL> SELECT swriden_last _name, swriden_Ffirst_name
FROM swriden;

SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME

Brown Julie
Brown Julie
Smith Robert
Johnson Peter
Jones Sandy
Jones-Erickson Sandy
Erickson Ralph
Erickson Susan
White Nancy

With DISTINCT

SQL> SELECT DISTINCT swriden_last_name, swriden_first _name
FROM swriden;

SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME

Brown Julie
Erickson Ralph
Erickson Susan
Johnson Peter
Jones Sandy
Jones-Erickson Sandy
Smith Robert
White Nancy
© SunGard 2004-2007 Introduction to Oracle

Page 43

Section C: Introduction to the Query

Lesson: Selecting All Columns

Separator

To retrieve all columns, specify all columns separated by commas, or use an asterisk (*).
SELECT * FROM <table name>;

Example
SQL> SELECT * FROM swriden;

© SunGard 2004-2007 Introduction to Oracle
Page 44

Section C: Introduction to the Query

Lesson: Column Heading Aliases

«f Jump to T0OC

Aliases

Aliases are used to substitute column headings in the SELECT statement. The default headings
are in UPPERCASE and reflect the column name.

Example
SQL> SELECT DISTINCT swriden_pidm "ID Number',
swriden_last_name "Last Name',
swriden_first _name "First Name"
FROM swriden;
ID Number Last Name First Name
12340 Brown Julie
12341 Smith Robert
12342 Johnson Peter
12343 Jones Sandy
12343 Jones-Erickson Sandy
12344 Erickson Ralph
12345 Erickson Susan
12346 White Nancy

Multiple words

Enclosing the Heading Alias within double quotes allows the use of multiple-word headings. If
the alias is one word, then the quotes are not necessary.

The default headings are in UPPERCASE and reflect the column name. An alias allows you to
not only change the name but change the case of the heading.

© SunGard 2004-2007 Introduction to Oracle
Page 45

Section C: Introduction to the Query

Lesson: Pseudo-columns

«f Jump ta T0C

Pseudo-columns

A pseudo-column is a column that yields a value when selected, but is not actually a column in a
table. Below are some frequently used pseudo-columns.

ROWNUM

Returns a number indicating the sequence in which a row was selected from a table or set of
joined rows.

SQL> SELECT ROWNUM, swriden_pidm, swriden_last_name
FROM swriden;

ROWNUM SWRIDEN_PIDM SWRIDEN_LAST_NAME

ROWID

The ROWID is an internally generated and maintained binary value that identifies a row of data
in a table. The information in ROWID provides the exact physical location of a row in the
database. The return value of ROWID provides this value in a readable format.

SQL> SELECT rowid, swriden_last _name
2 FROM swriden;

ROWID SWRIDEN_LAST_NAME
AAAKTQAAGAAAabTAAA Brown
AAAKITQAAGAAAabTAAB Brown
AAAKITQAAGAAAAbTAAC Smith
AAAKTQAAGAAAabTAAD Johnson
AAAKITQAAGAAAabTAAE Jones

AAAKTQAAGAAAabTAAF
AAAKTQAAGAAAabTAAG
AAAKTQAAGAAAabTAAH
AAAKTQAAGAAAabTAAI
AAAKTQAAGAAAabTAAJ
AAAKTQAAGAAAabTAAK

Jones-Erickson
Erickson
Erickson

White

Marx

Clifford

© SunGard 2004-2007

Page 46

Introduction to Oracle

Section C: Introduction to the Query

Lesson: Pseudo-columns (Continued)

< Jumpto T0C

ROWID format
The ROWID format appears as follows:

OOOOOOFFFBBBBBBSSS
e 000000 The object number
e FFF The relative file number
o BBBBBB The block number in the file
e SSS The slot number within the block

Note: Prior to 8.x, the ROWID was something like a 16-digit string, with each digit being base-
16. From 8.x on, the ROWID is something like a 20-digit string, with each digit being base-64.

SYSDATE

The current date and time.
SQL> SELECT SYSDATE FROM DUAL;

SYSDATE

01-APR-05

USER

The name of the current user.
SQL> SELECT USER FROM DUAL;

TRAINO1

© SunGard 2004-2007 Introduction to Oracle
Page 47

Section C: Introduction to the Query

Lesson: Self Check

< Jumpto T0C

Directions
Use the information you have learned in this workbook to complete this self check activity.

For the following exercises, use the Student subject table: SWRREGS. You may want to
describe the table before performing the exercises.

Exercise 1
Write a query to return all the columns.

Exercise 2
Write a query to return the PIDM (Personal identification master), CRN (course number), and
GPA (grade point average) for each record.

© SunGard 2004-2007 Introduction to Oracle
Page 48

Section C: Introduction to the Query

Lesson: Self Check (Continued)

< Jumpto T0C

Exercise 3
Write a query to return the unique course numbers.

Exercise 4
Write a query to return the row number, row identification, and PIDM for each record.

© SunGard 2004-2007 Introduction to Oracle
Page 49

Section C: Introduction to the Query

Lesson: Self Check (Continued)

< Jump ta T0C

Exercise 5
Select the system date from the dummy table DUAL.

© SunGard 2004-2007 Introduction to Oracle
Page 50

Section D: Conditions and Operators

Lesson: Overview

<@ Jumpta T0C

Introduction
So far, we have discussed ways to query information from a particular table or database. In this
section, we will discuss making queries more selective by only returning rows which meet

certain criteria.

Objectives
At the end of this section, participants will be able to
e Specify all or specific rows based upon search criteria using:
O comparison operators
o logical operators
o0 miscellaneous operators
e Use the pseudo-columns ROWNUM and ROWID to narrow searches
e Use parameters so that users are prompted for column or search information.

© SunGard 2004-2007 Introduction to Oracle
Page 51

Section D: Conditions and Operators

Lesson: Overview (Continued)

- Jump to 100

Section contents

(@ YT RV .Y R 51
070 oo 111 To] o 13RO SR ST SROPRRTP 53
The WHERE ClAUSE.......cvviiii ittt sttt e e s s bbb e e s s s bt e e e e s sabaa e e s seabeeeas 54
COMPATISON OPEIALOIS. ...c.vieueiiteeieeiesiee e et steesteete s e e steaeesreesaeatesreesteeseesseesseansesseesseeneesneesees 55
LOGICAI OPBIALOIS ...ttt bbb bbbt n bbbt bt 57
BETWEEN OPBIaLOr ... ciiiieiiiiiiiesiie ettt sttt sbe et s a b e nbe et e nnnaenbeenneas 58
TN OPEIALON ... 59
(]S O 0TI (o] PO P PR 60
NOT OPBIALONttt b e e bt e n e abeene s 61
PrECEUBNCE RUIES......oi ottt ettt s e s b e st e e s be e s be e sbeesabeesbeeenbeesrneeans 62
e T[S (=] TS 64
L] | 4 0 1=Tod OSSPSR 67
© SunGard 2004-2007 Introduction to Oracle

Page 52

Section D: Conditions and Operators

Lesson: Conditions

< Jumpto T0C

What is a condition?

In SQL, a condition is a restriction on a query so that only rows which meet those conditions will
be returned. Conditions are added through the use of the WHERE clause.

© SunGard 2004-2007 Introduction to Oracle
Page 53

Section D: Conditions and Operators

Lesson: The WHERE Clause

- Jump to 100

Syntax

SELECT select_list
FROM table_name
WHERE condition

WHERE Clause Components

e Column name or expression
e Comparison operator

Example
SQL> SELECT swriden_last_name, swriden_first _name
FROM swriden

WHERE swriden_last name = "Erickson-®;
SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME
Erickson Ralph
Erickson Susan
© SunGard 2004-2007 Introduction to Oracle

Page 54

Section D: Conditions and Operators

Lesson: Comparison Operators
- Jump ta 100
Operators
Operators are used in WHERE clauses to compare values.
Operator Function Examples

@) Overrides precedence SELECT (X +Y)/(X-Y)

= Test for equality ..WHERE last_name =
‘SMITH'

I= A= <> Test for inequality ..WHERE last_name
<>‘SMITH'

> Greater than ..WHERE sat verbal > 450

>= Greater than or equal to ..WHERE sat verbal >= 450

< Less than ..WHERE sat math < 450

<= Less than or equal to ..WHERE sat math <= 450

Using ROWNUM

Take advantage of the pseudo-column ROWNUM to limit the number of rows returned. The
ROWNUM is assigned to a row after it has evaluated the WHERE clause.

SQL> SELECT
FROM
WHERE

ROWNUM

SWRIDEN_PIDM SWRIDEN_LAST_NAME

Johnson

ROWNUM, swriden_pidm, swriden_last_name
swriden
ROWNUM < 5;

© SunGard 2004-2007

Page 55

Introduction to Oracle

Section D: Conditions and Operators

Lesson: Comparison Operators (Continued)

< Jumpto T0C

Using ROWID

Use the pseudo-column ROWID (the actual location of a row in a table) to distinguish between
duplicate rows. Then, delete the extra row based on the ROWID.

SQL> SELECT ROWID, swriden_pidm PIDM,
swriden_last_name LAST_NAME,
swriden_fTirst_name FIRST_NAME

FROM swriden
WHERE swriden_change_ind IS NULL;

ROWID PIDM LAST_NAME FIRST_NAME
AAANOVAAJAAAAANAAA 12340 Brown Julie
AAANOVAAJAAAAANAAC 12341 Smith Robert
AAANOVAAJAAAAANAAD 12342 Johnson Peter
AAANOVAAJAAAAANAAF 12343 Jones-Erickson Sandy

© SunGard 2004-2007 Introduction to Oracle

Page 56

«f Jump to 100

Definition

Section D: Conditions and Operators

Lesson: Logical Operators

Compound logical expressions are two or more expressions connected by logical operators.

Diagram 1

Example 1

SQL> SELECT
FROM

WHERE

AND

AND true false null

True true false null

False false false false

Null null false null

swraddr_stat_code, swraddr_zip, swraddr_pidm
swraddr

swraddr_stat _code = "PA*

swraddr_zip = "19380";

SWR SWRADDR_ZIP SWRADDR_P

PA 19380

Diagram 2

Example 2

SQL> SELECT
FROM

WHERE

OR

SWRIDEN_LAST_NA

White
Johnson
Johnson

12340
OR true False null
True true True true
False true False null
Null true Null null

swriden_last_name, swriden_first _name, swriden_id
swriden

swriden_last _name = "Johnson*

swriden_id = "843853339";

SWRIDEN_FIRST_N SWRIDEN_I

Peter 853954312
Nancy 843853339
Jeremy 825110988
lan 861232200

© SunGard 2004-2007

Introduction to Oracle
Page 57

Section D: Conditions and Operators

Lesson: BETWEEN Operator

«f Jump to 100

BETWEEN operator

The BETWEEN condition is used to return rows containing values between two specified values
(inclusive).

Example

SQL> SELECT swrtest_pidm, swrtest_sat verbal
FROM swrtest
WHERE swrtest sat verbal BETWEEN 520 AND 800;

SWRTEST_PIDM SWRTEST_SAT_VERBAL

12340 550
12341 530
12342 660
12341 590
12343 530
12345 590
12346 630
12346 520
12346 520

With logical operators
Keep in mind that logical operators may evaluate character data as well:

SQL>SELECT twvdetc_code DETC, twvdetc_desc
FROM twvdetc
WHERE twvdetc_code BETWEEN ®"BOOK® AND "CHEK-;

DETC TWVDETC_DESC
BOOK Book Charges
CHEK Check Payment
CASH Cash Payment

© SunGard 2004-2007 Introduction to Oracle
Page 58

Section D: Conditions and Operators

Lesson: In Operator

< Jumpto T0C

IN operator
The IN operator is used in the WHERE clause to retrieve data which matches a value in the list
provided.

Example
SQL> SELECT swriden_pidm, swriden_id, swriden_last name,
Swriden_first _name FIRST_NAME
FROM swriden
WHERE swriden_last name IN ("Smith", "Jones®, "Johnson®);

PIDM ID LAST_NAME FIRST_NAME
12341 882993466 Smith Robert
12342 853954312 Johnson Peter
12343 845672112 Jones Sandy
12352 825110988 Johnson Jeremy
12353 861232200 Johnson lan
© SunGard 2004-2007 Introduction to Oracle

Page 59

Section D: Conditions and Operators

Lesson: LIKE Operator

< Jumpto T0C

LIKE operator

The LIKE condition is used to select information based on pattern matching. There can be more
than one wildcard in a LIKE condition.

Wildcard characters

e 9% matches any number of characters
e _ matches a single character

Example 1
SQL> SELECT swvcrse_crn CRN, swvcrse_desc DESCRIPTION
FROM swvcrse
WHERE swvcrse_desc LIKE *"S%";

CRN DESCRIPTION

10012 Statistics
10015 Speech
10020 Swimming

Example 2
SQL> SELECT swvcrse_crn CRN, swvcrse_desc DESCRIPTION
FROM swvcrse
WHERE swvcrse_desc LIKE"%1_gy*©;

CRN DESCRIPTION

10006 Zoology
10008 Psychology
10011 Anthropology

© SunGard 2004-2007 Introduction to Oracle
Page 60

Section D: Conditions and Operators

Lesson: NOT Operator

< Jumpto T0C

NOT operator

The NOT operator may be used to make a negative condition out of the following operators:
NOT BETWEEN...AND...

NOT IN (list)

ISNOT NULL

NOT LIKE

Example
SQL>SELECT swriden_id ID, swriden_first _name FIRST_NAME,
Swriden_last_name LAST NAME, swriden_change ind CHG
FROM swriden
WHERE swriden_change_ind IS NOT NULL;

ID FIRST_NAME LAST_NAME o
876536782 Julie Brown |
845672112 Sandy Jones N
817253082 Michelle Vaughn N
029348721 Frederick Dukes |
029348721 Marcus Jordan N
855231118 Tracy Goode N
832736321 Devon Roberson |
© SunGard 2004-2007 Introduction to Oracle

Page 61

Section D: Conditions and Operators

Lesson: Precedence Rules

«f Jump ta T0C

Expression evaluation

When a condition contains more than one expression, Oracle evaluates each expression
according to the order of evaluation. The order of evaluation is determined by the precedence of
the connecting operators.

Equal precedence
=, 1=, >, >= <, <=, IN, LIKE, IS NULL, BETWEEN...AND...

Logical operators

The logical operators are evaluated in this order:
1. NOT

2. AND

3. OR

Example 1 (Incorrect)

For example, suppose that you wish to retrieve data for a survey for all students who are married
or have a birth date before '01-Jan-60". Do not include confidential records.

SQL> SELECT *
FROM swbpers
WHERE swbpers_confid_ind = "N~
AND swbpers_mrtl_code = "M~
OR swbpers_birth _date < "01-JAN-60";

SWBPERS_PIDM SWBPERS_S SWBPERS B S S S SWBPERS_A SWBPERS_USER SWBPERS
12341 682082678 12-NOV-70 M M N 10-DEC-05 TRAIN_ORA101 TRAINING
12348 231560987 25-MAR-41 M F N 07-DEC-05 TRAIN_ORA101 TRAINING
12353 035341098 29-JUN-65 M M N O07-DEC-05 TRAIN_ORA101 TRAINING
12357 430896512 27-NOV-52 M M Y 07-DEC-05 TRAIN_ORA101 TRAINING
12359 318760932 31-DEC-54 D F Y 07-DEC-05 TRAIN_ORA101 TRAINING

What data are you actually retrieving?

© SunGard 2004-2007 Introduction to Oracle
Page 62

Section D: Conditions and Operators

Lesson: Precedence Rules (Continued)

«f Jump to 100

Example 2 (correct)
The correct way:

SQL> SELECT *
FROM swbpers
WHERE swbpers_confid_ind = "N~
AND (swbpers_mrtl_code = "M~
OR swbpers_birth_date < "01-JAN-60%);

SWBPERS_PIDM SWBPERS_S SWBPERS B S S S SWBPERS_A SWBPERS_USER SWBPERS
12341 682082678 12-NOV-7 0-DEC-05 TRAIN_ORA101 TRAINING
12348 231560987 25-MAR-4 7-DEC-05 TRAIN_ORA101 TRAINING
12353 035341098 29-JUN-6 7-DEC-05 TRAIN_ORA101 TRAINING

[)
===
=T
=z2=Z22=2
(eoNeN]

© SunGard 2004-2007 Introduction to Oracle
Page 63

Section D: Conditions and Operators

Lesson: Parameters

«f Jump to 100

Ampersand prompt

Use the ampersand (&) to prompt users for parameters. When SQL*Plus encounters an
ampersand variable, the user is prompted for input.

Enter substitute variables anywhere in a SQL statement command except in the first word

entered at the prompt.

Example 1

SQL> SELECT *
FROM swvcrse

WHERE swvcrse crn = "&Course Num®;

Enter value for course_num: 10021

SWVCRSE_CRN SWVCRSE_DESC

10021 Economics

Example 2

SQL> SELECT *
FROM &select_table;

Enter value for table: SWRREGS

SWRREGS_ SWRREGS_C SWRREGS_G

12340 200501 10001
12340 200501 10007
12340 200501 10015
12340 200501 10017

SWVCRSE_A

17-APR-05

SWRRE SWRREGS_A
3.2 17-APR-05
2.1 17-APR-05
2.8 17-APR-05

17-APR-05

© SunGard 2004-2007

Introduction to Oracle
Page 64

Section D: Conditions and Operators

Lesson: Parameters (Continued)

< Jumpto T0C

Parameters Data Types
Parameter data must be entered in the data type that matches the column data type. For example:
e Character — enclose in single quotes
e Date — enclose in single quotes — enter in Oracle default format (‘dd-Mon-yyyy’ or ‘dd-
Mon-yy”’)
e Number — no quotes
SQL> SELECT *
FROM swbpers
WHERE swbpers_birth_date > &birth_date;

Enter value for birth_date: "01-Jan-1980"

Single quotes can be included in the SQL statement to avoid having to guess whether a prompt
requires quotes or not.

SQL> SELECT *
FROM swbpers
WHERE swbpers_birth_date > "&birth_date”;

Enter value for birth_date: 01-Jan-1980

© SunGard 2004-2007 Introduction to Oracle
Page 65

Section D: Conditions and Operators

Lesson: Parameters (Continued)

< Jump to [0C

Double ampersand

Avoid repetitious variable entry for the entire session by using the double ampersand (&&). It
will prompt you the first time for a value, and each subsequent use of the same variable
(&&variable) will use the value you entered.

SQL> SELECT &&my_ numb, &&my numb + 10,

&&my numb + 20
FROM DUAL;

Enter value for my_numb: 1

Undefining double ampersand variables

To remove the value of a double ampersand variable, use the undefine command.
SQL> undefine my_numb

Once you undefined a variable, if you use it again with the double ampersands, it will prompt
you for a value (once after each undefine).

© SunGard 2004-2007 Introduction to Oracle
Page 66

Section D: Conditions and Operators

Lesson: Self Check

«f Jump to 100

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
Query the first five rows from the SWRREGS table.

Try to query rows 3 and higher from SWRREGS. What occurred?

Exercise 2

Using SWRADDR, find the city, state, and zip code for PIDM (internal identification master)
12340. Remember to describe the table first to see the names of the fields.

© SunGard 2004-2007 Introduction to Oracle
Page 67

Section D: Conditions and Operators

Lesson: Self Check (Continued)

- Jump to 100

Exercise 3

From SWRIDEN, query the students who do not have the last name of 'Erickson'. Remember to
only include the most current record for each student. Return all columns.

Exercise 4

Use the single ampersand in a SQL statement to prompt for a table name, displaying all columns
within a table. Run this query for SWRREGS and SWRIDEN.

© SunGard 2004-2007 Introduction to Oracle
Page 68

Section D: Conditions and Operators

Lesson: Self Check (Continued)

Exercise 5

Retrieve the first name, last name, and ID from SWRIDEN where the ID begins with a 0. (Hint:
use the keyword LIKE)

Retrieve the first name, last name, and ID from SWRIDEN where the fourth character in the ID
field is a 6 and the total length of the column is 7.

© SunGard 2004-2007 Introduction to Oracle
Page 69

Section D: Conditions and Operators

Lesson: Self Check (Continued)

< Jumpto T0C

Exercise 6
Using the SWRREGS table, list the PIDM, CRN, and GPA for students who have taken golf,
tennis, or swimming. (Hint: look at the validation table SWVCRSE first to find the code values

for the courses.)

© SunGard 2004-2007 Introduction to Oracle

Page 70

Section D: Conditions and Operators

Lesson: Self Check (Continued)

«f Jump to 100

Note
For exercises 7 - 9, refer to the SAT test table, SWRTEST.

Exercise 7
Retrieve the student records where the student achieved above 550 in both math and verbal.

Exercise 8
Retrieve the student records where the student achieved above 550 in either math or verbal.

Exercise 9

Retrieve the student records where the student took the SAT between

'01-JAN-06' and '31-MAY-06' (if the two-digit year does not work, try entering the four-digit
year).

© SunGard 2004-2007 Introduction to Oracle
Page 71

< Jump to [0C

Introduction

Section E: Arithmetic Expressions and
Functions

Lesson: Overview

Oracle supports arithmetic expressions in SQL statements to perform various calculations on

numbers:
+

0

Add

Subtract

Multiply

Divide

Override Precedence

In addition, Oracle supports a wide range of built-in functions to manipulate data.

Objectives

At the end of this section, participants will be able to
e Use arithmetic expressions to perform calculations on data
e Use the following within SQL statements:

(0]

O O0OO0oOo

Numeric functions
Character functions
Date functions
Conversion functions
Group functions.

© SunGard 2004-

2007 Introduction to Oracle
Page 72

Section E: Arithmetic Expressions and
Functions

Lesson: Overview (Continued)

< Jump to 100

Section contents

L@ YT YT, 72
ATTNMELIC EXPIESSIONScuviiiiiiiicie ettt et beesbe e e snaesteeseesraestaenee s 74
(O (0 TR0}l Yz 11T L1 (o] 75
N[LT (ol U g Tox £ R 77
(O g P = Tox (1 gl U103 £ 0] IR 80
REGUIAT EXPIESSIONSvvevietieiteeie ettt ettt st ettt e e aa e s ba et e snaesteesneaneesteeeesneers 86
(o] g F= L 1Y/ 0T (=Y £ 89
DA FUNCLIONS......viiiitie ettt e e s eb e s e e e e st e e s st e e s st e e e sabasssbbeeesbbeessbeneans 92
CONVEISION FUNCLIONSviiiii ittt ettt et e sttt e e e s et e e e s s bt e e e s s sabbeeesssabeneessnbeenas 94
CONVEISION FUNCLIONSeiiiiiii ittt eb st eb e s s b e e sab e e s s abae s eabaeesnreas 95
GOUP FUNCEIONS ...ttt bbb 103
Y= O 1 [=To] 105
© SunGard 2004-2007 Introduction to Oracle

Page 73

Section E: Arithmetic Expressions and
Functions

Lesson: Arithmetic Expressions

< Jump to 100

Purpose
Arithmetic expressions allow you to perform calculations on data.

Example 1
SQL> SELECT swrtest_sat_verbal SAT_ORIG,
swrtest_sat verbal + 100 SAT_MOD
FROM swrtest;

SAT_ORIG SAT_MOD
550 650
530 630
660 760
590 690
530 630
370 470
Example 2

SQL> SELECT swrtest _sat verbal VERBAL, swrtest _sat math MATH,
swrtest_sat verbal + swrtest sat math TOTAL
FROM swrtest;

VERBAL MATH TOTAL
550 480 1030
530 580 1110
660 520 1180
590 610 1200
530 420 950
590 620 1210
630 590 1220
520 460 980

550
500

Other operators

Similarly, you can use the subtraction (-), division (/), and multiplication (*) arithmetic
operators.

© SunGard 2004-2007 Introduction to Oracle
Page 74

Section E: Arithmetic Expressions and
Functions

Lesson: Order of Evaluation

< Jump ta [0C

Expression evaluation

The Relational Database Management System evaluates each arithmetic expression. The results
are then combined in the order determined by the following precedence:

o ¥ Multiplication

/ Division

+ Addition

- Subtraction

Overriding precedence

To override the precedence rules, use parentheses. Oracle evaluates expressions within
parentheses first.

Examples

The following examples retrieve the balance from the student account balance table. According
to the precedence rules, division will occur before addition, so the following examples yield
different results.

Example 1

In the first example, 100 is divided by 12 and then added to the balance.
SQL> SELECT twraccd_balance BAL_ORIG,
twraccd_balance + 100 /12 “BAL_MOD”
FROM twraccd;

BAL_ORIG BAL_MOD
1500.5 1508.8333
300.2 308.53333
-700 -691.6667
1100 1108.3333
500 508.33333
-1000 -991.6667
1200 1208.3333
50 58.333333
800 808.33333
800 808.33333
-1100 -1091.667

© SunGard 2004-2007 Introduction to Oracle

Page 75

Section E: Arithmetic Expressions and
Functions

Lesson:

Order of Evaluation (Continued)

< Jump to 100

Example 2
In the second example, 100 is added to the balance, and then the total is divided by 12.

SQL> SELECT twraccd balance BAL_ORIG,
(twraccd_balance + 100)/12 “BAL_MOD”
FROM twraccd;

BAL_ORIG BAL_MOD

1500.5 133.375
300.2 33.35
-700 -50
1100 100
500 50
-1000 -75
1200 108.33333
50 12.5
800 75
800 75
-1100 -83.33333

© SunGard 2004-2007

Introduction to Oracle

Section E: Arithmetic Expressions and
Functions

Lesson: Numeric Functions

< Jump to 100

ABS(n)
Returns the absolute value of n.
SQL> SELECT ABS(-32) FROM DUAL;

ABS(-32)

CEIL(n)
Returns smallest integer greater than or equal to n.

SQL> SELECT CEIL(12.8) FROM DUAL;
CEIL(12.8)

SQL> SELECT CEIL(-16.2) FROM DUAL;
CEIL(-16.2)

FLOOR(n)
Returns largest integer equal to or less than n.

SQL> SELECT FLOOR(12.8) FROM DUAL;
FLOOR(12.8)
SQL> SELECT FLOOR(-17.5) FROM DUAL;

FLOOR(-17.5)

© SunGard 2004-2007 Introduction to Oracle
Page 77

Section E: Arithmetic Expressions and
Functions

Lesson: Numeric Functions (Continued)

< Jump to 100

MOD(m, n)
Returns remainder of m divided by n. If n is negative and greater than m, m is returned.

SQL> SELECT MOD(5,2) FROM DUAL;
MOD(5,2)

POWER(m, n)
Returns m raised to the nth power. n must be an integer; if not, an error will be returned.

SQL> SELECT POWER(10,2) FROM DUAL;
POWER(10,2)
SQL> SELECT POWER(-10,3) FROM DUAL;
POWER(-10,3)

ROUND(n [,m])

Returns n rounded to m places right of the decimal point; if m is omitted, then n is rounded to the
nearest whole number.

SQL> SELECT ROUND(15.67,1) FROM DUAL;
ROUND(15.67,1)
SQL> SELECT ROUND(152,-1) FROM DUAL;

ROUND(152,-1)

© SunGard 2004-2007 Introduction to Oracle
Page 78

Section E: Arithmetic Expressions and
Functions

Lesson: Numeric Functions (Continued)

< Jump to 100

SIGN(n)
If n <0, the function returns -1; if n = 0, the function returns O; if n > 0, then the function returns
1.

SQL> SELECT SIGN(-15) FROM DUAL;
SIGN(-15)
SQL> SELECT SIGN(15) FROM DUAL;
SIGN(15)
SQL> SELECT SIGN(0) FROM DUAL;
SIGN(0)

TRUNC(n [,m])

Returns n truncated to m decimal places. If m is omitted, then the decimal is removed
completely. m can be negative to truncate m digits left of the decimal point.

SQL> SELECT TRUNC(16.99,1) FROM DUAL;
TRUNC(16.99,1)
SQL> SELECT TRUNC(16.99,-1) FROM DUAL:

TRUNC(16.99,-1)

© SunGard 2004-2007 Introduction to Oracle
Page 79

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions

<d Jump ta 100

ASClI(char)
Returns the ASCII value for the given character.

SQL> SELECT ASCII1("A") FROM DUAL;
ASCII("A")

CHR(n)
Returns the character having ASCII value n.

SQL> SELECT CHR(65) FROM DUAL;

C

A

© SunGard 2004-2007 Introduction to Oracle
Page 80

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions (Continued)

< Jump to 100

CONCAT(m, n) or |||
Merges together two fields specified by m and n.

SQL> SELECT CONCAT(swriden_Tfirst _name, swriden_last _name) '"Name"
FROM swriden;

JulieBrown
JulieBrown
RobertSmith
PeterJdohnson
SandyJones

To merge two or more fields, use the pipes:

SQL> SELECT swriden_last name]|", "||] swriden_first_name "Name"
FROM swriden;

Brown, Julie
Brown, Julie
Smith, Robert
Johnson, Peter
Jones, Sandy

© SunGard 2004-2007 Introduction to Oracle
Page 81

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions (Continued)

«d Jump ta TOC

INITCAP(char)
Returns char with the first letter of each word in uppercase and all other letters in lowercase.

SQL> SELECT INITCAP("BASEBALL GAME®") FROM DUAL;

INITCAP("BASE

Baseball Game

LOWER(char)
Returns char, with all letters forced to lowercase.

SQL> SELECT LOWER("BASEBALL GAME®)
FROM DUAL;

LOWER("B

baseball game

UPPER(char)
Returns char, with all letters forced to uppercase.

SQL> SELECT UPPER("big letters®) "Upper Case"
FROM DUAL;

Upper Case

BIG LETTERS

SQL> SELECT swriden_last _name LAST_NAME,
swriden_fTirst_name FIRST_NAME
FROM swriden
WHERE UPPER(swriden_last_name) = “WHITE";

LAST_NAME FIRST_NAME
White Nancy
© SunGard 2004-2007 Introduction to Oracle

Page 82

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions (Continued)

< Jump ta [0C

LPAD(charl, n [,char2])

Returns charl, left-padded to length n with the sequence of characters in char2; char2 defaults to

blanks.
SQL> SELECT LPAD(swriden_pidm,8,0) "PIDM" FROM swriden;

00012340
00012340
00012341
00012342

RPAD(charl, n [,char2])

Returns charl, right-padded to length n with sequence of characters in char2; if char2 is omitted,
right-pad with blanks.

SQL> SELECT RPAD(swriden_last _name,20,".")|| swriden_id "ID Listing"
FROM swriden
WHERE swriden_change_ind IS NULL;

ID Listing
Brown............... 857834585
Smith. 882993466
Johnson............. 853954312
Jones-Erickson...... 845672112
Erickson............ 892568211
Erickson............ 878549991
White............... 843853339
Marx.oeoeeeeeenaa-. 822874301
Clifford............ 862100933
Serum. . ..oeeeeeaeans 881337923
Dukes. ..., 817253082
Dukes. ..o, 872109834
Johnson............. 825110988
Johnson............. 861232200
Bristow............. 831603288
McNair.............. 855231118
Miner.........o-.... 832092865
Roberson............ 832763321
Peterson............ 853084511
Jameson. 8486565
© SunGard 2004-2007 Introduction to Oracle

Page 83

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions (Continued)

< Jump to TOC

LTRIM(char [, set])

Removes characters from the left of char, with initial characters removed up to the first character
not in the set; set defaults to ' ', which removes extra blanks.

SQL> SELECT LTRIM("123ABC123","123%)
FROM DUAL;

LTRIM(

ABC123

RTRIM(char [, set])

Removes characters from the right of char, with initial characters removed up to the first
character not in the set; defaults to ', which removes extra blanks.

SQL> SELECT RTRIM("123ABC123","123") FROM DUAL;

RTRIM(

123ABC

SUBSTR(char, m [,n])

Returns a portion of char, beginning at character m, n characters long (if n is omitted, to the end
of char).

SQL> SELECT SUBSTR("BANNER University",1, 6) "Substring”
FROM DUAL;

Substring

BANNER

SQL> SELECT SUBSTR("BANNER University”,8) "Substring"
FROM DUAL;

Substring

University

© SunGard 2004-2007 Introduction to Oracle
Page 84

Section E: Arithmetic Expressions and
Functions

Lesson: Character Functions (Continued)

< Jump to 100

LENGTHY(char)
Returns the length of char.

SQL> SELECT LENGTH("abc®) FROM DUAL;

LENGTH("ABC™)

Note: If the evaluated field is null, then no value (null) will be returned.

SOUNDEX (char)
Returns character string containing the phonetic representation of char.

SQL> SELECT swriden_last_name LAST_NAME
FROM swriden
WHERE SOUNDEX(swriden_last_name) = SOUNDEX("SMYTHE®");

LAST_NAME

© SunGard 2004-2007 Introduction to Oracle
Page 85

Section E: Arithmetic Expressions and
Functions

Lesson: Regular Expressions

«f Jumpto T0C

Regular Expressions (10g only)

In Oracle 10g functionality was added to do regular expression searching. Regular expressions
allow you to search and manipulate text strings using complex patterns. There are four functions
that were introduced to support regular expressions.

REGEXP_LIKE
REGEXP_LIKE (' source_string, pattern [, match_parameter])

The source_string is a character-type column or literal.
The pattern is the regular expression string of characters you are trying to match.
The match_parameter are optional parameters that aid in searching:

I — specifies case insensitive matching

c — specifies case sensitive matching

n — specifies that a period (.) should match a new line character

m — specifies that the string is multiple lines

Example
Do a case insensitive search, selecting first and last names where the first name starts with a

vowel.
SELECT swriden_first_name, swriden_last _name
FROM swriden
WHERE regexp_like(swriden_first_name, "~[aeiou]","1");

SWRIDEN_FIRST_N SWRIDEN_LAST_NAME

lan Johnson
Amy Peterson

REGEXP_INSTR
REGEXP_INSTR(source_string, pattern,
[, position [, occurrence
[, return_option [, match_parameter]]1)

The return_option of 0 (default) returns the position of the first character of the occurrence. A 1
returns the position of the character following the occurrence.

© SunGard 2004-2007 Introduction to Oracle
Page 86

Section E: Arithmetic Expressions and
Functions

Lesson: Regular Expressions (Continued)

- Jump ta 100
REGEXP_INSTR (continued)

Example

Select first and last name and position of second vowel in first name, case insensitive, where the
last name is at least 6 characters long. Do not include rows where the first name does not have 2
vowels.

SQL>SELECT swriden_first _name, swriden_last name,
REGEXP_INSTR(swriden_first_name, "[aeiou]",1,2,0,"1%)
secnd_vowel
FROM swriden
WHERE REGEXP_LIKE (swriden_last name,"[[:alpha:]]1{6,}","1")
AND REGEXP_INSTR(swriden_first _name, "[aeiou]”,1,2,0,"i") > O;

SWRIDEN_FIRST_N SWRIDEN_LAST NAME SECND_VOWEL
Peter Johnson 4
Susan Erickson 4
Stephanie Clifford 6
Michelle Vaughn 5
Marcus Jordan 5
Jeremy Johnson 4
lan Johnson 2
Brandon Bristow 6
Devon Roberson 4
Devon Roberson 4
Jennifer Jameson 5

REGEXP_REPLACE
REGEXP_REPLACE (source_string, pattern [, position [, occurrence
[, match_parameter]]1])

Example
Add a space between each character.

SQL> SELECT REGEXP_REPLACE("Banner Univ.", "(.)", "\1 ") more_space
2 FROM dual;

MORE_SPACE

© SunGard 2004-2007 Introduction to Oracle
Page 87

Section E: Arithmetic Expressions and
Functions

Lesson: Regular Expressions (Continued)

< Jumpto T0C

REGEXP_SUBSTR
REGEXP_SUBSTR (source_string, pattern [, position [, occurrence
[, match_parameter]]1])

Example
For those who have PO Box numbers as their address, extract the box number.

SELECT REGEXP_SUBSTR(swraddr_street_linel,".*",
REGEXP_INSTR(swraddr_street_linel, "PO Box",1,1,1,"i") +1
,1,"1") box_nbr

FROM swraddr
WHERE swraddr_street_linel like "PO%";

BOX_NBR

© SunGard 2004-2007 Introduction to Oracle
Page 88

Section E: Arithmetic Expressions and
Functions

Lesson: Format Models

- Jump ta 100

Date format element models
Date format element models for TO_CHAR and TO_DATE

This table lists the date format elements. You can use any combination of these elements as the
fmt argument of the TO_CHAR and TO_DATE functions. Fmt defaults to the default DATE

format, 'DD-MON-YY".

Format element Value returned

SCCorCC Century; 'S' prefixes BC date with '-'

YYYY or SYYYY Year; 'S' prefixes BC date with '-'

YYYorYYorY Last 3, 2, or 1 digit(s) of year. Century defaults
to current

RR Last 2 digits of year. 50 - 99 = 20th century, 00
- 49 =21st century

BC or AD BC/AD indicator

B.C. or A.D. BC/AD indicators with periods

Q Quarter of year (1, 2, 3, 4)

MM Month of year (01 - 12)

RM Roman Numeral month ('1...XII)

MONTH Name of month padded with blanks to nine
characters

MON Name of month abbreviated (JAN, FEB, etc.)

WW or W Week of year (1 - 52) or month(1 - 5)

DDD orDDor D Day of year (1-366) or month (1 - 31) or week
1-7)

DAY Name of day, blank-padded to 9 characters

DY Name of day, 3 letter abbreviation

J Julian day (days since December 31, 4713 BC)

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 Hour of day (1 - 12)

HH24 Hour of day (1 - 23)

MI Minute (0 - 59)

SS or SSSSS Seconds (0 - 59) or seconds past midnight (O -
86399)

-/, Punctuation is reproduced in the result

© SunGard 2004-2007

Introduction to Oracle

Page 89

Section E: Arithmetic Expressions and
Functions

Lesson: Format Models (Continued)

«f Jump to T0OC

Date format element models (cont.)

Format element Value returned

"...text..." Quoted string is reproduced in the result

Date format prefixes and suffixes

FM "Fill mode." Suppresses blank padding when
prefixed to MONTH or DAY.

FX "Format exact." Punctuation and quoted text in
the character argument must exactly match
(except for case) the corresponding parts of the
format model in the TO DATE function.

Suffixes
You can add these suffixes to date format elements:
e TH Ordinal number ("DDTH" for "4TH")
e SP Spelled-out number ("DDSP" for "FOUR")

e SPTHand THSP Spelled-out ordinal number ("DDSPTH" for "FOURTH")

Date format case control
The following strings specify output in uppercase, initial caps, or lower case.

Uppercase Initial caps Lower case
DAY Day day
DY Dy dy
MONTH Month month
YEAR Year year
AM Am am
PM Pm pm
AM. A.m. a.m.
P.M. P.m. p.m.
© SunGard 2004-2007 Introduction to Oracle

Page 90

Section E: Arithmetic Expressions and
Functions

Lesson: Format Models (Continued)

< Jump to T0C

Number format models
Number format models for TO_CHAR

Format Example Function
element
9 '9999' Number of "9"s determines length of returned character
0 '0999' Prefixes value with leading or trailing zeroes
$ '$9999' Prefixes value with a dollar sign
B 'B9999' Returns zero values as blanks, instead of "0"
MI '9999MI Returns "-" after negative values
S 'S9999' Returns "+" for positive values and "-" for negative
values
PR '999PR' Returns negative values in <angle brackets>
D 99D99 Returns the decimal character
G 9G999 Returns the group separator
L L999 Returns the local currency symbol
C C999 Returns the international currency symbol
, '9,999' Returns comma in this position
) '99.99' Returns period in this position
V '999Vv99' Multiplies value by 10" where n is "9"s after V
EEEE '9.99EEEFE' Returns value in scientific notation
RM or rn RN Upper or lowercase Roman numerals
DATE 'DATE' Returns value converted from Julian date
© SunGard 2004-2007 Introduction to Oracle

Page 91

Section E: Arithmetic Expressions and
Functions

Lesson: Date Functions

«f Jump to T0OC

ADD_MONTHS(d, n)
Returns the date d plus n months. Can be negative to subtract months.

SQL> SELECT ADD_MONTHS("10-DEC-057,2) FROM DUAL;

ADD_MONTH

10-FEB-06

LAST_DAY(d)
Returns the date of the last day of the month that contains d.

SQL> SELECT LAST_DAY("15-JAN-05") FROM DUAL;

LAST_DAY(

31-JAN-05

MONTHS_BETWEEN (d, e)

Returns the number of months between dates d and e. If d is less than e, then the result is
negative.

SQL> SELECT MONTHS_BETWEEN("01-JAN-06", "11-0OCT-05") "Months"
FROM DUAL;

Months

2.67741935

NEXT_DAY (d, char)
Returns the date of the first day of the week named by char that is later than d.

SQL> SELECT NEXT_DAY("05-FEB-05", "FRIDAY")
""Pay Date™
FROM DUAL;

Pay Date

11-FEB-05

© SunGard 2004-2007 Introduction to Oracle
Page 92

Section E: Arithmetic Expressions and
Functions

Lesson: Date Functions (Continued)

< Jump to 100

TRUNC (d, [,fmt])

Returns d with the time portion of the date truncated to the unit specified by the
format model fmt.

SQL> SELECT TRUNC(TO_DATE("05-0CT-05"), "YEAR") '"Date"
FROM DUAL;

01-JAN-05

ROUND (d [,fmt])

Returns d with the time portion of the date rounded to the unit specified by the
format model fmt.

NOTE on ROUND: Days past the middle of a month round up to the next month, months July to
Decenber round up to the next year, and dates stored with time after 12:00PM(noon) will round
to the next day.

SQL> SELECT ROUND(TO_DATE("05-0CT-05"),"YEAR") "Date"
FROM DUAL;

01-JAN-06

© SunGard 2004-2007 Introduction to Oracle
Page 93

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions

< Jump ta [0C

TRANSLATE (char, from, to)

Returns char with all occurrences of each character in from replaced by its corresponding
character in to.

SQL> SELECT TRANSLATE("PERRY®","P*,*J") FROM DUAL;

TRANS

JERRY

SQL> SELECT TRANSLATE("ABC123ABC123","B3","X0") "Translate"
FROM DUAL;

Translate

AXC120AXC120

NVL (exprl, expr2)
Fields in a database which contain NULL values actually contain no value. Because NULL ina

field can give unexpected results, it is best to convert the NULL into another value such as a zero
for a number field or a space for a character field.

SQL> SELECT NVL(swrtest_sat_math,0) MATH,
NVL(swrtest_sat verbal,0) VERBAL,
NVL(swrtest_sat_math,0) + NVL(swrtest_sat verbal,0)
“"Tot Score",
swrtest_sat _math + swrtest _sat verbal ""Tot No NVL"
FROM swrtest;

MATH VERBAL Tot Score Tot No NVL
480 550 1030 1030
580 530 1110 1110
520 660 1180 1180
610 590 1200 1200
420 530 950 950
620 590 1210 1210
590 630 1220 1220
460 520 980 980
550 0 550

0 500 500
© SunGard 2004-2007 Introduction to Oracle

Page 94

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions

<f Jump ta T0C

COALESCE (exprl, expr2, expr3...)

Returns the first argument (beginning on the left) that is NOT NULL. It is similar to the NVL
function, but it can take multiple alternate values. It accepts any number of arguments.

SELECT swrtest sat math, swrtest sat _verbal,
COALESCE(swrtest_sat_math,
swrtest_sat_verbal ,0) ""COALESCE RESULT"
FROM swrtest;

SWRTEST_SAT_MATH SWRTEST_SAT_VERBAL COALESCE RESULT

480 550 480
580 530 580
520 660 520
610 590 610
420 530 420
620 590 620
590 630 590
460 520 460
550 550
500 500

0

NULLIF(exprl, expr2)
If exprl = expr2 then return null, else return exprl.

SELECT swrtest sat _math, swrtest sat_verbal,
NULLIF(swrtest_sat_verbal ,530)
FROM swrtest;

SWRTEST_SAT_MATH SWRTEST_SAT_VERBAL NULLIF(SWRTEST_SAT_VERBAL,530)

480 550 550
580 530
520 660 660
420 530
620 590 590
550
500 500
© SunGard 2004-2007 Introduction to Oracle

Page 95

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

< Jump ta [0C

DECODE(expr, searchl, resultl, [search2, result2,]... [default])

The DECODE function converts the retrieved value from the database (search value) of the
expression to a value specified (result). If no match is found, the DECODE function returns the
default value. If no default value is specified, then the default will return a null.

SQL> SELECT swbpers_pidm,
DECODE (swbpers_sex, "F", "Female®, "M", "Male®,
"Unknown®) "Gender"
FROM swbpers;

12340 Female
12341 Male
12343 Female
12344 Male
12345 Unknown

DECODE can be used to perform a calculation. Consider a table which stores an amount as an
absolute value and an indicator to specify if the refund is a negative quantity.

SQL> SELECT DECODE(refund, "Y", amount * -1,
amount)
FROM

It’s easy to think of a DECODE as a simple If-Then-Else statement:
DECODE((expr, searchl, resultl, search2, result2,...default) can be thought of as:
If expr = search 1 then resultl
Else if expr = search2 then result2
Else if expr = search3 then result3

E.iée default

© SunGard 2004-2007 Introduction to Oracle
Page 96

Section E: Arithmetic Expressions and
Functions

Lesson:

- Jump ta 100

CASE

Conversion Functions (Continued)

There are two types of case statements — Simple and Searched.

Simple CASE

The simple CASE is similar to DECODE. It can be used to search and replace values within a
given expression. You can specify a return value for each searched value. No comparison
operators can be used in the simple CASE.

This decode statement can be re-written as the simple CASE statement below:

SELECT swbpers_pidm,
decode(swbpers_mrtl_code, *S*", "Swinging Single~,

FROM swbpers;

Same statement as a case statement:

SELECT swbpers_pidm,
CASE swbpers_mrtl_code

WHEN
WHEN
WHEN
WHEN
ELSE
END
FROM swbpers;

Both statements return:

"*S® THEN
"M® THEN
"W® THEN
"D" THEN
"Unknown*

SWBPERS_PI1DM DECODE(SWBPERS_

12340 Swinging Single
12341 Happily Married
12343 Swinging Single
12344 Swinging Single
12345 Widowed
12346 Divorced

"M, "Happily Married”,
W=, "Widowed",
"D*,"Divorced”,
"Unknown™)

"Swinging Single~
"Happily Married”
“"Widowed*®
"Divorced”

© SunGard 2004-2007

Introduction to Oracle
Page 97

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

< Jump to 100

CASE (continued)

Searched Case

The searched case allows for test conditions other than equality.

SELECT swrtest_pidm,
CASE
WHEN swrtest_sat_math < 300 THEN "Unacceptable~
WHEN swrtest_sat math between 301 and 500 THEN "Needs Work*®
WHEN swrtest_sat _math > 500 THEN "Excellent”
ELSE "Unknown®
END
FROM swrtest

SWRTEST_PIDM CASEWHENSWRT
12340 Needs Work
12341 Excellent
12342 Excellent
12341 Excellent
12343 Needs Work
12345 Excellent
12346 Excellent
12346 Needs Work
12347 Excellent
12345 Unknown
12344 Unknown

© SunGard 2004-2007 Introduction to Oracle
Page 98

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

< Jump to TOC

INSTR (charl, char2 [, n [,m]])
Searches charl beginning with its nth character for the mth occurrence of char2 and returns the
position of the character in charl that is the first character of this occurrence.

SQL> SELECT INSTR("MISSISSIPPI®,"SS") "STRING"
FROM DUAL;

STRING

Both of the following produce the same result:

SQL> SELECT INSTR(*MISSISSIPPI*®,"SS",5) "STRING™
FROM DUAL;

SQL> SELECT INSTR("MISSISSIPPI®,"SS",1,2) "'STRING"
FROM DUAL;

STRING

INSTR and character strings

Use INSTR to parse a character string. In the view swvtele, the name column is created by the
concatenation of last_name, a comma, a space, first name, a space, and mi (middle initial). The
name column in this view would be parsed as follows:

SQL> SELECT swvtele name,
INSTR(swvtele_name,",") "Comma™
FROM swvtele;

SWVTELE_NAME Comma
Brown, Julie 6
Smith, Robert 6
Johnson, Peter 8
Jones-Erickson, Sandy 15

© SunGard 2004-2007 Introduction to Oracle
Page 99

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

< Jump to 100

REPLACE (char, search_string [, replace_string])

Returns char with every occurrence of search_string replaced with replacement_string. If
replacement_string is omitted, all occurrences of search_string are removed.

SQL> SELECT REPLACE("100 Lakeshore Drive # 3-,
"#%, "No.") '"Changes™
FROM DUAL ;

Changes

100 Lakeshore Drive No. 3

TO_DATE (char [,fmt])

Converts a character value to a date value. If the fmt clause is omitted, then the character value
must have the default format of 'DD-MON-YY'. When the format is not in the default form, you
must explicitly tell Oracle the format.

SQL> SELECT to_date("12/31/2005", "mm/dd/yyyy")
FROM dual;

TO_DATE("

31-DEC-05

© SunGard 2004-2007 Introduction to Oracle
Page 100

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

«d Jump ta TOC

TO_CHAR (d, [,fmt])
Converts number and dates into a character.

SQL> SELECT TO_CHAR(SYSDATE, "DD-MON-YYYY*") "DATE™"
FROM DUAL;

20-MAY-2005

SQL> SELECT TO_CHAR(SYSDATE, "FMMonth DD, YYYY") "DATE"
FROM DUAL;

May 20, 2005

SQL> SELECT TO_CHAR(SYSDATE, "DD-MON-YY HH24:HH:SS") "DATE"
FROM DUAL;

20-MAY-05 14:02:22

SQL> SELECT TO_CHAR(SYSDATE, "FMDay, FMMonth
FMDASPTh, Syear®) 'DATE"
FROM DUAL;

Tuesday, May Twentieth, Nineteen Ninety-Seven

Note: Dates that have been converted using TO_CHAR are no longer sorted by date, but by
alphanumeric order. If you are forced to use a converted date in a GROUP BY clause, it is best
to convert the date to the YYYYMMDDHH24MISS format.

© SunGard 2004-2007 Introduction to Oracle
Page 101

Section E: Arithmetic Expressions and
Functions

Lesson: Conversion Functions (Continued)

«d Jump ta TOC

RR: Changing Millennia

With the arrival of the 21% century, the need to refer to both the 20™ and 21% centuries is
necessary. The RR date format will change the pivot so that two-digit years from 50 - 99 refer to
the 20" century; years from 00 - 49 refer to the 21% century. If the date is retrieved from a field
where the date was inserted as a four-digit year, then changing the pivot year is not necessary.

SQL> SELECT to_date("01-Jan-70","dd-Mon-RR") "DATE"

FROM dual;

01-Jan-1970

SQL> SELECT to_date("01-Jan-70","dd-Mon-YY") "DATE"

FROM dual;

01-Jan-2070

TO_NUMBER (char)
Converts char to a numeric data type.

SQL> SELECT TO _NUMBER("001") + TO NUMBER(*002") *TOTAL"
FROM DUAL;

© SunGard 2004-2007 Introduction to Oracle
Page 102

Section E: Arithmetic Expressions and
Functions

Lesson: Group Functions

«d Jump ta TOC

Group functions

Group functions are used to obtain summary information about groups of rows. All group
functions, except COUNT (*), ignore null values. Use the NVL function in the argument to
substitute a value of null in a group function.

AVG(n)

Returns the average value of n.
SQL> SELECT AVG(swrregs_gpa) FROM swrregs;
AVG(SWRREGS_GPA)
""" 2.86216216
SQL> SELECT AVG(NVL(swrregs_gpa,0)) FROM swrregs;
AVG(NVL(SWRREGS_GPA,0))

2.40681818

COUNT ({ *|expr})
Returns the number of rows in a query. If specifying a count on a particular column, the null
values are not included.

SQL> SELECT COUNT(*) FROM swrregs;
COUNT (™)
SQL> SELECT COUNT(swrregs_gpa) FROM swrregs;

COUNT(SWRREGS_GPA)

© SunGard 2004-2007 Introduction to Oracle
Page 103

Section E: Arithmetic Expressions and
Functions

Lesson: Group Functions (Continued)

< Jump to 100

MAX (expr)
Returns the maximum value of expr.

SQL> SELECT MAX(swrregs_gpa) FROM swrregs;
MAX(SWRREGS_GPA)

MIN(expr)
Returns the minimum value of expr.

SQL> SELECT MIN(swrregs_gpa) FROM swrregs;

MIN(SWRREGS_GPA)

SUM(n)
Returns sum of values of n.

SQL> SELECT SUM(swrregs_gpa) FROM SWRREGS;

SUM(SWRREGS_GPA)

© SunGard 2004-2007 Introduction to Oracle
Page 104

Section E: Arithmetic Expressions and
Functions

Lesson: Self Check

< Jump to 100

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
In the SWRREGS table, what is the average GPA of all the classes that PIDM 12342 took?

Exercise 2
How many records does PIDM 12343 have in the SWRIDEN table?

© SunGard 2004-2007 Introduction to Oracle
Page 105

Section E: Arithmetic Expressions and
Functions

Lesson: Self Check (Continued)

< Jump to 100

Exercise 3

Select the PIDM and the combined score of the SAT verbal and math for each record from the
SWRTEST table.

Exercise 4

Return the first name concatenated with the last name from the SWRIDEN table. Return only
rows where the uppercase value of the first name is 'PETER'.

© SunGard 2004-2007 Introduction to Oracle
Page 106

Section E: Arithmetic Expressions and
Functions

Lesson: Self Check (Continued)

< Jump ta 100

Exercise 5

What is the lowest and highest SAT verbal scores for students who took the test in March or
April 2006 using SWRTEST?

Exercise 6

Retrieve the PIDM and age (whole number) from SWBPERS. Use the birth date and current
system date to obtain the age.

© SunGard 2004-2007 Introduction to Oracle
Page 107

Section F: Nesting Functions

Lesson: Overview

«d Jump to 100

Introduction
Nesting of functions within functions provides greater flexibility and complexity in writing SQL

statements. Most functions can be nested with other functions to manipulate data. A number of
commonly used nesting of functions will be provided in this section.

Note that this section contains only a very small subset of possible function combinations. There
are countless combinations of functions.

Objectives

This section will examine the following commonly used nesting of functions:
e Nesting CASE

Nesting COUNT

Nesting DECODE

Nesting SUBSTR

Nesting SUM

Section Contents

(@ YT RV L. 108
AN e] T T O AN =SSR 109
NESEING COUNT ...t bbbttt b bbb 111
NESHING DECODEc.ooiieece ettt re et ente e e sne e teennennee e 112
NESEING SUBSTR ...ttt b bbbt 113
A=] T TR 61 SR 115
1= L O 1 1CTo] S 116
© SunGard 2004-2007 Introduction to Oracle

Page 108

Section F: Nesting Functions

Lesson: Nesting CASE

<d Jump ta 100

Nesting CASE with other functions

Case statements can have other functions nested within them. The following example looks at
the first digit of the zip code to determine the region of the country in which the address is

located.

SQL> SELECT swraddr_pidm, CASE
WHEN substr(swraddr_zip,1,1) between "0" and "3*

THEN "Eastern*®

WHEN substr(swraddr_zip,1,1) between "4" and "7°
THEN “Middle*

WHEN substr(swraddr_zip,1,1) > "7*°
THEN "Western”

ELSE "Foreign®

END as REGION
FROM swraddr;

SWRADDR_PIDM REGION
12340 Eastern
12341 Western
12342 Middle
12343 Eastern
12344 Middle
12345 Eastern

© SunGard 2004-2007 Introduction to Oracle
Page 109

Section F: Nesting Functions

Lesson: Nesting CASE (Continued)

«f Jump to T0OC

Nesting multiple CASE statements

Case statements can be nested within themselves. This example evaluates the birth year and the
sex of each person for determining a life insurance premium percentage. The older the person,
the higher the life insurance premium. Since women tend to live longer than men do, their
premiums are less.

SQL> SELECT swbpers_pidm, swbpers_birth_date, swbpers_sex,
CASE
WHEN to_char(swbpers_birth_date, "YYYY") < 1945
THEN CASE swbpers_sex
WHEN *M® THEN * 25%"
WHEN *"F" THEN * 20%"
ELSE " 30%"
END
WHEN to_char(swbpers_birth_date,"YYYY") between 1946 and 1965
THEN CASE swbpers_sex
WHEN *M® THEN * 15%"
WHEN "F" THEN * 10%"
ELSE " 20%"
END
WHEN to_char(swbpers_birth_date, "YYYY") between 1966 and 1985
THEN CASE swbpers_sex
WHEN *M® THEN * 5%"
WHEN *"F® THEN * 0%"
ELSE " 10%"
END
WHEN to_char(swbpers_birth_date, "YYYY") > 1985
THEN CASE swbpers_sex
WHEN *M® THEN * 5%"
WHEN "F" THEN * 0O%"
ELSE " 10%"
END
ELSE " 50%"
END as INSURANCE_PREMIUM
FROM swbpers;

SWBPERS_PIDM SWBPERS_BIR S INSU
12344 30-0ct-1973 M
12345 05-Jan-1984 F
12346 15-Feb-1961 F
12348 25-Mar-1941 F 20%
12353 29-Jun-1965 M
12355 04-Jul-1960 F

© SunGard 2004-2007 Introduction to Oracle
Page 110

Section F: Nesting Functions

Lesson: Nesting COUNT

< Jump to [0C

Nesting COUNT
The COUNT function can be nested with other functions to provide differing results.

COUNT with DISTINCT
There may be a need where just counting the number of records in a table is not sufficient. You
may want to know how many unique values are in a table.

SQL> SELECT count(*) FROM swrregs;

COUNT(*)

SQL> select count(DISTINCT swrregs_pidm) FROM swrregs;

COUNT(DISTINCTSWRREGS_P1DM)

These shows there are 44 total records in the SWRREGS table, but only 9 unique PIDM values.
This is expected behavior for a registration table where a student is enrolled in multiple courses.

© SunGard 2004-2007 Introduction to Oracle
Page 111

Section F: Nesting Functions

Lesson: Nesting DECODE

< Jump to TOC

Nesting DECODE
Decode statements can be nested inside each other to provide additional evaluation of data.

This statement will check the confidential indicator before publishing the marital status of each
person. If the person has requested confidentiality, ‘Not Available” will be the result instead of
their actual status:

SQL> SELECT swbpers_pidm,

decode(swbpers_confid_ind, "N" ,decode(swbpers_mrtl_code, "S*", "Single”,
"M*®,*Married”,
W=, "Widowed",
"D","Divorced”,
"Unspecified”),

"Y*","Not Available®,
null, “Unknown®)
FROM swbpers;

SWBPERS_PIDM DECODE(SWBPER
12340 Not Available
12341 Married
12344 Single
12350 Widowed
12352 Divorced
12355 Not Available

This could also have been written as a nested CASE statement:

SELECT swbpers_pidm,
CASE swbpers_confid_ind
WHEN *N* THEN CASE swbpers_mrtl_code
WHEN *S* THEN "Single*
WHEN *M®" THEN "Married”
WHEN "W® THEN “Widowed"
WHEN "D®" THEN "Divorced*®
ELSE "Unspecified”
END
WHEN "Y*® THEN "Not Available*
ELSE “Unknown®
END
FROM swbpers;

© SunGard 2004-2007 Introduction to Oracle
Page 112

Section F: Nesting Functions

Lesson:

Nesting SUBSTR

«f Jumpto T0C

Nesting SUBSTR

The SUBSTR function is often combined with the INSTR or LENGTH functions to parse

character strings.

SUBSTR with INSTR

We can take the full name field from the SWVTELE view and break it back into its separate
parts. This type of functionality is useful for conversions and loading data from third party

systems.

A comma separates the last name from the first and middle names. The second space in the
string, after the comma, separates the first name from the middle name.

SQL> SELECT swvtele name,

substr(swvtele_name,1,instr(swvtele_name,",") -1) '"Last Name",
substr(swvtele_name, instr(swvtele name,",") +2,
(instr(swvtele_name," ",1,2) -1) - instr(swvtele_name,",")
) "First Name',
substr(swvtele_name, instr(swvtele_name," ",1,2) + 1) "Middle"”

FROM swvtele;

SWVTELE_NAME

Last Name

First Name

Brown, Julie K

Smith, Robert E
Johnson, Peter S
Jones-Erickson, Sandy J
Erickson, Ralph L
Erickson, Susan T

Marx, Joan Elizabeth
Clifford, Stephanie Geena
Serum, Tracy Paige
Dukes, Michelle Q
Johnson, Jeremy P
McNair, Tracy A

Miner, Christopher U
Jameson, Jennifer W

Smith
Johnson
Jones-Erickson
Erickson
Erickson
Marx
Clifford
Serum
Dukes
Johnson
McNair
Miner
Jameson

Julie
Robert
Peter
Sandy
Ralph
Susan
Joan
Stephanie
Tracy
Michelle
Jeremy
Tracy
Christopher
Jennifer

A rrrcomnmXxX

Elizabeth
Geena
Paige

=C>»7UVO

© SunGard 2004-2007

Page 113

Introduction to Oracle

Section F: Nesting Functions

Lesson: Nesting SUBSTR (Continued)

o JmptoTOD

SUBSTR with LENGTH

The SUBSTR function can be combined with the LENGTH function to parse part of a string
where there are no clear delimiters to use in an INSTR and the length of the string may vary.

For example, credit card number lengths differ by credit card companies. A new government
requirement to help protect against credit card fraud requires that credit card receipts only print
the last 4 digits of the card number. You need to know the length of the card number to
determine the last 4 digits.

substr(credit_card_no, length(credit_card_no)-3,4) “CARD NO,
expire_date
FROM credit card_table;

CARD NO EXPIRE_DATE

kFkkxAA] D34 0172001

Y | XoW4 1071997

Kk x Ak *AAXG789 0371999

© SunGard 2004-2007 Introduction to Oracle

Page 114

Section F: Nesting Functions

Lesson: Nesting SUM

o JumptoT00

Nesting SUM
The sum function can be combined with other functions to summarize only certain data based on
some criteria.

This query summarized account data based on detail code. If the code does not match in the
decode statement, a zero is used so that the sum will not be affected.

SQL> SELECT sum(decode(twraccd_detc_code, "TUIT" ,twraccd_amount,0))
“"Tuition Total",
sum(decode(twraccd_detc_code, "BOOK" ,twraccd_amount,0))
""Book Total",
sum(decode(twraccd_detc_code, "LABS* ,twraccd_amount,0))
"Labs Total",
sum(decode(twraccd_detc_code, "DORM® ,twraccd_amount,0))
"Dorm Total"
FROM twraccd;

Tuition Total Book Total Labs Total Dorm Total

6650.5 1400.2 220 1500

Be careful of the order you place function when using SUM:
SQL> select sum(round(twraccd_balance)) from twraccd;

SUM(ROUND(TWRACCD_BALANCE))

SQL> select sum(twraccd_balance) from twraccd;
SUM(TWRACCD_BALANCE)

SQL> select round(sum(twraccd_balance)) from twraccd;

ROUND (SUM(TWRACCD_BALANCE))

© SunGard 2004-2007 Introduction to Oracle
Page 115

Section F: Nesting Functions

Lesson: Self Check

- o JumptaTOL

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
Using a combination of functions and the table containing address data, parse the street address
field into House Number, Street Name, and Street direction.

Exercise 2
Sum the amount column in the TWRACCD table assigning positive values to Trans Type C and
negative values to Trans Type P.

© SunGard 2004-2007 Introduction to Oracle
Page 116

Section F: Nesting Functions

Lesson: Self Check (Continued)

< Jump to [0C

Exercise 3 (Optional)
Adding to the SQL in Exercise 1, check for PO Box addresses and lump ‘PO Box’ into the Street
Name. (Hint: Use the DECODE function).

© SunGard 2004-2007 Introduction to Oracle
Page 117

Section G: Clauses

Overview

< Jumpto T0C

Introduction
Clauses can be added to a SELECT statement to add conditions to the returned data as with the

WHERE clause. In addition, clauses may be used to summarize data and change the order in
which the data is returned.

Objectives

This section will examine the following clauses:
WHERE

ORDER BY

GROUP BY

HAVING

Section contents

(@Y= VT 118
ThE WHERE ClAUSE......covviiii ittt ettt e st s e st a e e s s sb b e e e e s eab b e e e e s nees 119
ORDER BY ..ottt ittt ettt ettt e ettt e e st e e e e bb e e e e e b a e e e et br e e e e e bba e e e e abra e e e aaraees 120
Ordering DY POSITIONoouiiiiiiiiieie e 122
(12010 i =) OO PROOPRRRRPI 123
[1N | N [P 125
Y= O = To] P TR 127
© SunGard 2004-2007 Introduction to Oracle

Page 118

Section G: Clauses

Lesson:

The WHERE Clause

«f Jump ta T0C

WHERE clause

As noted in Section D, the WHERE clause is comprised of one or more conditions added to a
query or manipulation statements so that only certain records are selected or manipulated.
e SELECT..

e FROM..

e WHERE..

Without WHERE
Without the WHERE clause, all rows will be returned from the specified table:

SQL> SELECT * FROM SWBPERS;

SWBPERS_PIDM

SWBPERS_S

SWBPERS_B

S SWBPERS_A

USERID ORIGIN

With WHERE

585442212
682082678
555444412
198767345
955433412
643091257
231560987
340541234
189054387
035341098
608321875
430896512
318760932

02-AUG-73
12-NOV-70
22-SEP-73
30-0CT-73
05-JAN-84
15-FEB-61
25-MAR-41
01-APR-76
19-MAY-78
29-JUN-65
04-JUL-60
27-NOV-52
31-DEC-54

OZ=ZZ0=Z0=0n0nx0m
METNMEETTTITIEZTET
<K<K <KzZ2ZZzZzzZzZzZz=Z2<z2Z2<

31-0CT-05
10-DEC-05
05-DEC-05
08-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05
07-DEC-05

TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101
TRAIN_ORA101

TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING
TRAINING

In the example below, rows are selected based on the criteria of birth date:

SQL> SELECT * FROM SWBPERS WHERE SWBPERS_BIRTH_DATE = "02-AUG-73";

SWBPERS_PIDM SWBPERS_S SWBPERS_B S S S SWBPERS_A USERID

ORIGIN

12340 585442212 02-AUG-73 S F Y 31-0CT-05 TRAIN_ORA101 TRAINING

© SunGard 2004-2007

Page 119

Introduction to Oracle

Section G: Clauses

Lesson: ORDER BY

«f Jump to T0OC

ORDER BY clause
The ORDER BY clause changes the order in which information is displayed.

Note: The order columns in the ORDER BY clause do not have to appear in the SELECT clause.
Without specifying ascending or descending order, ascending is assumed.

SELECT...
FROM...
WHERE...
ORDER BY...

Example 1

SQL> SELECT swbpers pidm, swbpers birth_date
FROM swbpers
ORDER BY swbpers_birth_date;

SWBPERS_PIDM SWBPERS_B
12348 25-MAR-41
12357 27-NOV-52
12359 31-DEC-54
12355 04-JUL-60
12346 15-FEB-61
12353 29-JUN-65
12341 12-NOV-70
12340 02-AUG-73
12343 22-SEP-73
12344 30-0CT-73
12350 01-APR-76
12352 19-MAY-78
12345 05-JAN-84

Example 2

SQL> SELECT swbpers pidm, swbpers birth_date
FROM swbpers
ORDER BY swbpers_birth_date DESC;

SWBPERS_PIDM SWBPERS_B
12345 05-JAN-84
12352 19-MAY-78
12350 01-APR-76

© SunGard 2004-2007 Introduction to Oracle
Page 120

Section G: Clauses

Lesson: ORDER BY (Continued)

- Jump to 100

Example 3
SQL> SELECT swriden_last_name, swriden_first_name

FROM swriden
ORDER BY swriden_last _name, swriden_Ffirst_name;

LAST_ NAME FIRST _NAME
Brown Julie

Brown Julie
Erickson Ralph
Erickson Susan

Johnson Peter

Jones Sandy
Jones-Erickson Sandy

Smith Robert

White Nancy

© SunGard 2004-2007 Introduction to Oracle

Page 121

Section G: Clauses

Lesson: Ordering by Position

«f Jump to 100

Column positions

Rather than specifying column names, refer to the columns by their position in the SELECT
statement.

SQL> SELECT swriden_last _name, swriden_Ffirst name
FROM swriden
ORDER BY 1,2;

SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME

Brown Julie
Brown Julie
Erickson Ralph
Erickson Susan
Johnson Peter
Jones Sandy
Jones-Erickson Sandy
Smith Robert
White Nancy

Note: Although ordering by position requires less programming effort, it should not be used for
programs. Adding columns to a table, re-arranging columns in a table, or re-arranging columns
in the SELECT statement may cause positional sorting to have unpredictable results.

© SunGard 2004-2007 Introduction to Oracle
Page 122

Section G: Clauses

Lesson: GROUP BY

«f Jump ta T0C

GROUP BY clause

Use the GROUP BY clause to group selected rows and return a single row of summary
information. Oracle collects each group of rows based on the values of the expression(s)
specified in the GROUP BY clause.

Restrictions

If a SELECT statement contains the GROUP BY clause, the select list can only contain these
types of expressions:

Constants

Group functions

Expressions identical to those in the GROUP BY clause

Expressions involving the above expressions that evaluate to the same value for all rows
in a group

Example 1

SQL> SELECT swrregs_pidm, AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_pidm;

SWRIDEN_PIDM AVG(SWRREGS_GPA)

12340 3.025
12341 2.475
12342 2.45
12343 3.1333333
12344 0]
12345 2.5
12346 2.7333333

The SELECT statement contains both a column name and a group function. This would return
an error without the GROUP BY clause, which references swbpers_pidm and causes
AVG(swhpers_gpa) to average the rows associated with each swbpers_pidm.

© SunGard 2004-2007 Introduction to Oracle
Page 123

Section G: Clauses

Lesson: GROUP BY (Continued)

< Jumpto T0C

Example 2

SQL> SELECT twraccd_term_code, twraccd_pidm, SUM(twraccd_amount)
FROM twraccd
GROUP BY twraccd_term_code, twraccd_pidm
ORDER BY twraccd_term_code, twraccd_pidm;

TWRACC TWRACCD_PIDM SUM(TWRACCD_AMOUNT)

200402 12344 1120
200501 12340 2500.7
200501 12341 1600
200501 12343 1900
200501 12344 2100.5
200501 12345 300
200501 12346 1900
200502 12342 1201
200502 12344 1150
200602 12342 1350
200602 12341 1000
© SunGard 2004-2007 Introduction to Oracle

Page 124

Section G: Clauses

Lesson: HAVING

< Jumpto T0C

HAVING clause
A HAVING clause places a condition on the GROUP function.

Example 1

SQL> SELECT SWRIDEN_PIDM, COUNT(*)
FROM SWRIDEN
GROUP BY SWRIDEN_PIDM
HAVING COUNT(*) > 1;

SWRIDEN_P COUNT(*)

Example 2

SQL> SELECT swrregs_pidm, AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_pidm
HAVING AVG(swrregs_gpa) < 3.0;

SWRIDEN_P AVG(SWRREGS_GPA)

12341 2.475
12342 2.45
12344 0
12345 2.5
12346 2.7333333

© SunGard 2004-2007 Introduction to Oracle

Page 125

Section G: Clauses

Lesson: HAVING (Continued)

< Jumpto T0C

Example 3
SQL> SELECT twraccd_pidm, twraccd_term_code, SUM(twraccd_amount)
FROM twraccd
WHERE twraccd_term_code >= "200501"
GROUP BY twraccd_pidm, twraccd_term_code
HAVING SUM(twraccd_amount) > 500
ORDER BY twraccd pidm, twraccd term_code;

TWRACCD_PIDM TWRACC SUM(TWRACCD_AMOUNT)

12340 200501 2500.7
12341 200501 1600
12341 200602 1000
12342 200502 1201
12342 200602 1350
12343 200501 1900
12344 200501 2100.5
12344 200502 1150
12346 200501 1900

Note: ORDER BY must be the last line in a WHERE clause.

© SunGard 2004-2007 Introduction to Oracle
Page 126

Section G: Clauses

Lesson: Self Check

<@ Jumpta T0C

Directions
Use the information you have learned in this workbook to complete this self check activity.

Examine the data to find out if the students have been receiving, on the average, low marks for
courses. Build the query step by step.

Exercise 1

Examine the Student Grades table (SWRREGS) using the DESC command. You will be
referring to this table for the rest of the section.

Exercise 2
Find the average GPA for each course number. Group by the course number.

© SunGard 2004-2007 Introduction to Oracle
Page 127

Section G: Clauses

Lesson: Self Check (Continued)

- Jump to 100

Exercise 3

To easily locate the courses with particularly low averages, order your data by the average
(lowest first).

Exercise 4

Reduce the list so that only courses with averages below 2.0 are returned using a WHERE
clause. Did you receive an error? Why?

© SunGard 2004-2007 Introduction to Oracle
Page 128

Section G: Clauses

Lesson: Self Check (Continued)

< Jumpto T0C

Exercise 5
Try Exercise 4 again, but put the condition in a HAVING clause.

Exercise 6

Your institution has changed the testing format for courses 10001 through 10006 from
consecutive terms of 200602 and 200702. Examine the effects of the format change. In order to
do this, select the course number, term code, and average GPA for the above courses and terms
using SWRREGS. Group and order by course number and term code.

According to the data, has the new test format had a positive or negative effect on the GPAS?

© SunGard 2004-2007 Introduction to Oracle
Page 129

Section G: Clauses

Lesson: Self Check (Continued)

Exercise 7
To ensure that there is enough data to make a valid conclusion, make sure at least 3 students
have taken the course in a term for the row to be returned. Use a HAVING clause to restrict the

data being returned.

© SunGard 2004-2007 Introduction to Oracle
Page 130

Section H: Advanced Queries

Lesson: Overview

«f Jump to 100

Introduction

Up to this point, we have provided examples of queries that return rows from only a single table.
However, on many occasions we are concerned with retrieving data from many tables within the
same query. For example, the student name, address, personal information, accounting
information, registration information, and test scores are all kept in separate tables.

This section looks at how to join this information, so that data from two or more tables are
retrieved with one SQL statement.

Objectives
At the end of this section, participants will be able to
e create queries to retrieve data from more than one table
o use the set operators of UNION, INTERSECT, and MINUS to combine two or more
queries into one result
e create subqueries to solve complex queries.

© SunGard 2004-2007 Introduction to Oracle
Page 131

Section H: Advanced Queries

Lesson: Overview (Continued)

Joins - Union, Union All, INtersSect, MINUScoocuiiiiiiiiiie et earan e 140
ST 10 [U 1= TSRS PRSSN 145
Subqueries Returning Multiple ValUES ... 147
NESTEA SUDGUETTES ...ttt te e e s re e e neenreenee e 149
Correlated SUDQUETTESocuiiiiiiiieeee e 150
DY U0 Tl SR 152
SEIF CRECK ...ttt e e nnnas 153
© SunGard 2004-2007 Introduction to Oracle

Page 132

Section H: Advanced Queries

Lesson: Joins

- Jump ta 100

Joins

A joinis a SELECT statement that combines rows from two or more tables and/or views. Oracle
performs joins whenever multiple tables appear in the FROM clause of a SELECT statement.

Joins and WHERE clause

The optional WHERE clause determines how Oracle combines rows of the tables. If the optional
WHERE clause is omitted, the result is called a Cartesian Product.

For instance, if there are 10 rows in the swriden table and 5 rows in the swraddr table, the
resulting join of these two tables without a WHERE condition would return 50 rows — each row
in the swriden table will be joined separately to each row in the swraddr table. This type of join
is rarely useful.
Equi-join
Returns rows from two or more tables based on an equality condition.

SELECT select_list

FROM tablel [,table2] [,table3] ..

WHERE tablel.column = table2.column
[AND tablel.column = table3.column] ..

Example 1

SQL> SELECT swriden_last_name|]]", "|lswriden_first_name|]" "I
swriden_mi NAME,
swraddr_street_linel]||" || swraddr_city]|", "1I
swraddr_stat_code|] " " || swraddr_zip ADDRESS
FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm
AND swriden_change_ind IS NULL;

NAME ADDRESS

Brown, Julie K 506 BROWN STREET WEST CHESTER, PA 19380
Smith, Robert E 210 PINE STREET SAN FRANCISCO, CA 94082
Johnson, Peter S PO BOX 1035 BROWNVILLE, KY 67233
Jones-Erickson, Sandy J 23 MARKET STREET WEST CHESTER, PA 19382
Erickson, Ralph L 18 CHESTNUT ROAD NEW ORLEANS, LA 23456

If a column name is ambiguous (same, exact column name in different tables), the column must
be preceded by the table name (e.g. tableA.columnl = tableB.columnl).

© SunGard 2004-2007 Introduction to Oracle
Page 133

Section H: Advanced Queries

Lesson: Joins (Continued)

«f Jump to T0OC

SQL 99 Equi-Join
Beginning with Oracle 9i Release 2, Oracle began supporting the SQL 99 or ANSI join syntax.
People who have worked with other SQL databases may be more familiar with this syntax.

In the SQL 99 standard, the JOIN takes place in the FROM clause instead of the WHERE clause.

e Natural Join — Join all columns that have the same name in all tables. The columns with like
names must have the same data types or you will receive an error. Can’t use if join columns
do not have the same name.

SELECT <item list>
FROM tableA NATURAL JOIN tableB
WHERE <conditions>

e Join..Using — Join two tables using the column(s) specified and not all columns that match in
name/type. The column names MUST match to use this syntax.

SELECT <item list>
FROM tableA JOIN tableB USING (tableA.column2 = tableB.column2)
WHERE <conditions>

e Join On — Specify the column names you want to join together. Required when column
names do not match exactly. Since Banner includes the table name in the column name, this
is the only method that can be used for SQL 99 joins.

o Can be equi-join or any other operator -- >, <, <>, etc.

© SunGard 2004-2007 Introduction to Oracle
Page 134

Section H: Advanced Queries

Lesson: Joins (Continued)

«f Jump to T0OC

SELECT swriden_last_name|]", "|lIswriden_first_name
I1° “llswriden_mi NAME,
swraddr_street_linel]|" "]| swraddr_city
I1°, "1l swraddr_stat_code ||® "|]| swraddr_zip ADDRESS
FROM swriden JOIN swraddr
ON (swriden_pidm = swraddr_pidm
AND swriden_change_ind 1S NULL);

NAME ADDRESS

Brown, Julie K 506 BROWN STREET WEST CHESTER, PA 19380
Smith, Robert E 210 PINE STREET SAN FRANCISCO, CA 94082
Johnson, Peter S PO BOX 1035 BROWNVILLE KY, 67233

NOTE: you don’t have to prefix the column names in the select clause with the table name when
using SQL99 JOIN syntax.

For example, in standard Oracle SQL where both tableA and tableB had a column called
column2, you would have to write the query specifying which table you want column2 to be
taken from:

SQL> SELECT columnl, tableA.column2, column3..
FROM tableA, tableB
WHERE tableA.column2 = tableB.column2;

Using SQL 99 syntax, you would write the same query as:

SQL> SELECT columnl, column2, column3..
FROM tableA JOIN tableB
USING (tableA.column2 = tableB.column2);

© SunGard 2004-2007 Introduction to Oracle
Page 135

Section H: Advanced Queries

Lesson: Joins (Continued)

«f Jump to T0OC

Outer joins

An outer join returns all the rows returned by an equi-join as well as those rows from one table
that do not have any rows from the other table. The table that might not contain matching data is
appended with a ‘(+)’ in the WHERE clause.

This syntax is specific to Oracle and is not available in any other version of SQL.

Example

SQL> SELECT swriden_last _name||®, "||lswriden_first_name||" ||
swriden_mi NAME,
swraddr_street_linel]|® "|| swraddr_city]|", "]
swraddr_stat_code I1° "l] swraddr_zip ADDRESS
FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm (+)
AND swriden_change_ind 1S NULL;

NAME ADDRESS

Brown, Julie K 506 BROWN STREET WEST CHESTER PA 19380
Smith, Robert E 210 PINE STREET SAN FRANCISCO CA 94082
Johnson, Peter S PO BOX 1035 BROWNVILLE KY 67233
Jones-Erickson, Sandy J 23 MARKET STREET WEST CHESTER PA 19382
Erickson, Ralph L 18 CHESTNUT ROAD NEW ORLEANS LA 23456

Erickson, Susan T
White, Nancy Carol
Marx, Joan Elizabeth

© SunGard 2004-2007 Introduction to Oracle
Page 136

Section H: Advanced Queries

Lesson: Joins (Continued)

«f Jump ta 100

Outer joins (SQL 99)
The SQL 99 standard for Outer Joins is different from the Oracle version. There are several
different types of Outer Joins in the SQL 99 standard.

e Left Outer Join — where the table to the LEFT of the clause is the driving table — records in
the table to the right of the clause may or may not exist.

e Right Outer Join — where the table to the RIGHT of the clause is the driving table — records
in the table to the left of the clause may or may not exist.

o Full Outer Join — where both tables drive — records that do not show up for either side are
shown. The only way to write this type of query in Oracle prior to the SQL 99 standard was
to use two separate queries and join the results using a UNION operator (discussed later).

A query that joins the SWRIDEN table to the SWRADDR table that shows SWRIDEN records
without addresses would be written as:

SQL> SELECT swriden_last name]|®, "|Iswriden_first name
I1° "1l swriden_mi NAME,
swraddr_street_linel]|" "|]|] swraddr_city
I1° "1] swraddr_stat_code|]" "|]| swraddr_zip ADDRESS
FROM swriden LEFT OUTER JOIN swraddr
ON swriden_pidm = swraddr_pidm
WHERE swriden_change_ind 1S NULL;

NAME ADDRESS

Brown, Julie K 506 BROWN STREET WEST CHESTER PA 19380
Smith, Robert E 210 PINE STREET SAN FRANCISCO CA 94082
Johnson, Peter S PO BOX 1035 BROWNVILLE KY 67233
Jones-Erickson, Sandy J 23 MARKET STREET WEST CHESTER PA 19382
Erickson, Ralph L 18 CHESTNUT ROAD NEW ORLEANS LA 23456

Erickson, Susan T
White, Nancy Carol

© SunGard 2004-2007 Introduction to Oracle
Page 137

Section H: Advanced Queries

Lesson: Joins (Continued)

«f Jump to T0OC

Self-joins

There may be cases when you will need to join a table to itself. This is especially helpful when
finding duplicates. In order to join a table to itself you must use table aliases. Below is an
example of a self-join.

Example 1

Ensure that no duplicates exist in the validation table SWVTERM. Using a self-join, retrieve the
records where the term coded match but the descriptions do not.

SQL> SELECT A.swvterm_term_code, A.swvterm_desc,
B.swvterm_term_code, B.swvterm_desc
FROM swvterm A, swvterm B
WHERE A.swvterm_term_code = B.swvterm_term_code
AND A_swvterm_desc <> B.swvterm_desc;

SWTER SWVTERM_DESC SWTER SWVTERM_DESC

200705 Spring Semester 2007 200705 Summer Semester 2007
200705 Summer Semester 2007 200705 Spring Semester 2007
Example 2

Another example is an employee/manager relationship. A manger is also an employee, so an
employee table may look like:

EMPLOYEE
Employee_ID
Employee_Name
Employee Dept
Employee_Manager_ID

SELECT EE.employee_id, EE.employee_name EMPLOYEE,
MGR.employee_name MANAGER
FROM employee EE, employee MGR
WHERE EE.employee manager_id = MGR.employee id;

EMPLOYEE_ID EMPLOYEE MANAGER

12345 Smith, John Jones, Joe

34567 Benson, Mary Carson, Cynthia

56789 Jones, Joe Carson, Cynthia

© SunGard 2004-2007 Introduction to Oracle

Page 138

Section H: Advanced Queries

Lesson: Joins (Continued)

<d Jump ta 100

Self-joins (SQL 99)

The same query above that checks for duplicate entries in the SWVTERM table would be written
in SQL 99 syntax as:

SQL> SELECT A.swvterm_term _code, A.swvterm_desc,
B.swvterm_term_code, B.swvterm_desc
FROM swvterm A JOIN swvterm B
ON (A.swvterm_term_code = B.swvterm_term_code
AND A_swvterm_desc <> B.swvterm_desc);

SWVTER SWVTERM_DESC SWVTER SWVTERM_DESC
200705 Spring Semester 2007 200705 Summer Semester 2007
200705 Summer Semester 2007 200705 Spring Semester 2007

© SunGard 2004-2007 Introduction to Oracle

Page 139

Section H: Advanced Queries

Lesson: Joins - Union, Union All, Intersect,

Minus
«f Jump to 100
Diagram
Table 1 Table 2
&
9

]

UNION

Returns all distinct rows for both select statements.
e 1,234,56,7,8

UNION ALL

Returns all rows for both select statements, regardless of duplicates.
e 1,234,54,56,7,8

INTERSECT

Returns only rows returned by both of the queries.
o 45

MINUS

Returns all rows returned by the preceding query that were not present in the second.
e 123

© SunGard 2004-2007 Introduction to Oracle
Page 140

Section H: Advanced Queries

Lesson: Joins - Union, Union All, Intersect,
Minus (Continued)

«f Jump ta T0C

Examples

Union & Union All

Union returns all distinct rows returned by both of the two queries. Union All returns all the
rows of the two queries, including duplicates.

Union

In this example, select SWRIDEN records without SWRADDR records and UNION with
SWRADDR records without SWRIDEN records

SQL> SELECT swriden_pidm, swriden_last_name,
swraddr_pidm, swraddr_atyp_code

FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm (+)

AND swriden_change_ind is null
UNION

SELECT swriden_pidm, swriden_last_name,
swraddr_pidm, swraddr_atyp code

FROM swriden, swraddr
WHERE swriden_pidm (+) = swraddr_pidm
AND swriden_change_ind (+) is null;

SWRIDEN_PIDM SWRIDEN_LAST NAME SWRADDR_PIDM SW
12340 Brown 12340 MA
12341 Smith 12341 PR
12342 Johnson 12342 PR
12343 Jones-Erickson 12343 P1
12344 Erickson 12344 MA
12345 Erickson 12345 PR
12346 White
12347 Marx 12347 P1
12348 Clifford 12348 P1
12349 Serum 12349 P1
12350 Dukes 12350 MA
12351 Dukes
12352 Johnson 12352 PR

12353 Johnson
12354 Bristow

12355 McNair 12355 P1
12356 Miner 12356 P1
12357 Roberson
12358 Jameson 12358 MA
12359 Peterson
12999 P1
© SunGard 2004-2007 Introduction to Oracle

Page 141

Section H: Advanced Queries

Lesson: Joins - Union, Union All, Intersect,
Minus (Continued)

Union All

SQL> SELECT swriden_pidm, swriden_last_name,
swraddr_pidm, swraddr_atyp code

FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm (+)

AND swriden_change_ind is null
UNION ALL

SELECT swriden_pidm, swriden_last _name,
swraddr_pidm, swraddr_atyp code

FROM swriden, swraddr
WHERE swriden_pidm (+) = swraddr_pidm
AND swriden_change_ind (+) is null;

SWRIDEN_PIDM SWRIDEN_LAST_NAME SWRADDR_PIDM SW
12340 Brown 12340 MA
12341 Smith 12341 PR
12342 Johnson 12342 PR
12343 Jones-Erickson 12343 P1
12344 Erickson 12344 MA
12345 Erickson 12345 PR
12346 White
12347 Marx 12347 P1
12348 Clifford 12348 P1
12349 Serum 12349 P1
12350 Dukes 12350 MA
12351 Dukes
12352 Johnson 12352 PR

12353 Johnson
12354 Bristow

12355 McNair 12355 P1
12356 Miner 12356 P1
12357 Roberson
12358 Jameson 12358 MA
12359 Peterson
12340 Brown 12340 MA
12341 Smith 12341 PR
12342 Johnson 12342 PR
12343 Jones-Erickson 12343 P1
12344 Erickson 12344 MA
12345 Erickson 12345 PR
12347 Marx 12347 P1
12348 Clifford 12348 P1
12349 Serum 12349 P1
12350 Dukes 12350 MA
12352 Johnson 12352 PR
12355 McNair 12355 P1
12356 Miner 12356 P1
12358 Jameson 12358 MA
12999 P1
© SunGard 2004-2007 Introduction to Oracle

Page 142

Section H: Advanced Queries

Lesson: Joins - Union, Union All, Intersect,
Minus (Continued)

< Jump to [0C

NOTE: The following intersect and minus examples refer to two imaginary tables,
SWRIDEN1 and SWRIDEN2, which contain the following data:

SWRIDEN1
SQL> SELECT swridenl last_name, swridenl_ first _name
FROM swridenl
WHERE swridenl_change_ind IS NULL;

SWRIDEN1_LAST_NAME SWRIDEN1_FIRST_NAME
Jones-Erickson Sandy
White Nancy
Marx Joan
SWRIDENZ2

SQL> SELECT swriden2_last_name, swriden2_ first _name
FROM swriden2
WHERE swriden2_change_ind 1S NULL;

SWRIDEN2_LAST_NAME SWRIDEN2_FIRST_NAME
Smith Robert
Johnson Peter
White Nancy
Marx Joan
© SunGard 2004-2007 Introduction to Oracle

Page 143

Section H: Advanced Queries

Lesson: Joins - Union, Union All, Intersect,
Minus (Continued)

«f Jump to 100

Intersect
Intersect returns only rows returned by both of the queries.

SQL> SELECT swridenl last _name, swridenl first name
FROM swridenl
WHERE swridenl change_ind 1S NULL
INTERSECT
SELECT swriden2_last_name, swriden2_first_name
FROM swriden2
WHERE swriden2_change_ind IS NULL;

SWRIDEN1 LAST_ NAME SWRIDEN1 FIRST_ NAME
Marx Joan
White Nancy

Minus

Minus returns all rows returned by the first query that are not present in the second.

SQL> SELECT swridenl last _name, swridenl first name
FROM swridenl
WHERE swridenl change_ind 1S NULL
MINUS
SELECT swriden2_last_name, swriden2_first_name
FROM swriden2
WHERE swriden2_change_ind IS NULL;

SWRIDEN1_LAST_NAME SWRIDEN1_FIRST_NAME

© SunGard 2004-2007 Introduction to Oracle
Page 144

Section H: Advanced Queries

Lesson: Subqueries

«f Jump to T0OC

Subquery

A subquery is a form of SELECT command that appears inside another SQL statement. A
subquery is sometimes called a nested query. The statement containing a subquery is called the
parent statement.

Example

SQL> SELECT swriden_last_name]]" "||swriden_first_name "NAME",
swvcrse_desc ""COURSE™, swrregs_gpa "'GPA™
FROM swvcrse, swriden, swrregs
WHERE swrregs_pidm = swriden_pidm
AND swrregs _crn = swvcCrse_crn
AND swrregs gpa > =
(SELECT AVG(swrregs_gpa)
FROM swrregs)
AND swriden_change ind IS NULL
ORDER BY swvcrse_desc, swriden_last _name,
swriden_first _name, swriden_mi;

NAME COURSE GPA
Erickson Susan Algebra 3.9
Johnson Peter Anthropology 3.3
Brown Julie Biology 3
Brown Julie Biology 3.1
Brown Julie Calculus 3.2
Erickson Susan Calculus 3
Johnson Peter Calculus 2.9
Jones-Erickson Sandy Calculus 4
Johnson Peter European History 3.4
Serum Tracy Philosophy 3.1
Smith Robert Photography 3.1
White Nancy Photography 3.6
© SunGard 2004-2007 Introduction to Oracle

Page 145

Section H: Advanced Queries

Lesson: Subqueries (Continued)

«f Jump to 100

Limitations

The subquery in the previous example returns only one row for each row evaluated in the parent
query. If the following statement were issued, without the AVG function, an error would occur.

SQL> SELECT swriden_last_name]]" "||swriden_first_name "NAME",
swvcrse_desc ""COURSE"™, swrregs _gpa "'GPA™
FROM swvcrse, swriden, swrregs
WHERE swrregs_pidm = swriden_pidm
AND swrregs_crn = swvcCrse_crn
AND swrregs_gpa > =
(SELECT swrregs_gpa
FROM swrregs
WHERE swrregs_gpa > 2)
AND swriden_change_ind IS NULL
ORDER BY swvcrse _desc, swriden_last name,
swriden_first_name;

ERROR:
ORA-01427: single-row subquery returned more than one row

The SQL statement fails because the parent query is expecting only one row to be returned from
the subquery.

© SunGard 2004-2007 Introduction to Oracle
Page 146

Section H: Advanced Queries

Lesson: Subqueries Returning Multiple
Values

«f Jump ta T0C

Multiple row comparisons

To evaluate comparisons that return more than a single row, use the following:
e ANY
e ALL
e IN/NOTIN
e EXISTS/NOT EXISTS

ANY

The example below would calculate the average GPA for each course, and then select the people
whose GPAs in a course are below any of the course averages.

SQL> SELECT swriden_last _name, swriden_first_name,
swvcrse_desc ""COURSE"™, swrregs_gpa "'GPA™
FROM swvcrse, swriden, swrregs
WHERE swrregs pidm = swriden_pidm
AND swrregs crn = swvcCrse_crn
AND swrregs_gpa < ANY (SELECT AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_crn)
AND swriden_change_ind IS NULL;

ALL

The example below would take the average GPA for each course, and then select the people
whose GPAs in a course are below all of the course averages.

SQL> SELECT swriden_last_name, swriden_first_name,
Swvcrse_desc ""COURSE™, swrregs_gpa "'GPA™
FROM swvcrse, swriden, swrregs
WHERE swrregs_pidm = swriden_pidm
AND SWrregs_crn = swvcrse_crn
AND swrregs_gpa < ALL (SELECT AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_crn)
AND swriden_change_ind 1S NULL;

© SunGard 2004-2007 Introduction to Oracle
Page 147

Section H: Advanced Queries

Lesson: Subqueries Returning Multiple
Values (Continued)

«f Jump ta T0C

IN
Use the IN operator to evaluate equality to any member of the test.

SQL> SELECT swriden_last_name, swriden_first_name,
twraccd_detc _code, twraccd amount, twraccd balance
FROM swriden, twraccd
WHERE swriden_pidm = twraccd_pidm
AND swriden_change ind IS NULL
AND twraccd_pidm IN (SELECT swrstdn_pidm
FROM swrstdn
WHERE swrstdn_stdn_code = "SS*)
ORDER BY swriden_last name, swriden_first _name;

SWRIDEN_LAST_NAME SWRIDEN_FIRST_NAME TWRA TWRACCD_A TWRACCD_B

Erickson Ralph TUIT 750 750
Erickson Ralph BOOK 400 400
Erickson Ralph LABS 120 120
Erickson Ralph MEAL 900 900
Erickson Ralph DORM 1000 1000
Erickson Ralph CASH 800 -800
Erickson Ralph CRED 400.5 -400.5
EXISTS

Evaluates to TRUE if the subquery returns a row:

SQL> SELECT swriden_last name, swriden_Ffirst_name
FROM swriden
WHERE swriden_change_ind IS NULL
AND EXISTS (SELECT *X* FROM swraddr
WHERE swraddr_pidm=swriden_pidm);

NOT EXISTS
Evaluates to TRUE if the subquery returns no rows:

SQL> SELECT swriden_last _name, swriden_Ffirst_name
FROM swriden
WHERE swriden_change_ind IS NULL
AND NOT EXISTS (SELECT *X®" FROM swraddr
WHERE swraddr_pidm=swriden_pidm);

© SunGard 2004-2007 Introduction to Oracle
Page 148

Section H: Advanced Queries

Lesson: Nested Subqueries

«f Jump to 100

Nesting
Nesting is the act of putting several subqueries in serial:

SQL> SELECT swriden_last_name, swriden_first_name
FROM swriden
WHERE swriden_change_ind IS NULL
AND swriden_pidm IN
(SELECT swbpers_pidm
FROM swbpers
WHERE swbpers mrtl _code = "S-
AND swbpers_pidm IN
(SELECT twraccd_pidm
FROM twraccd
WHERE twraccd_term_code = "200501%));

LAST_NAME FIRST_NAME
Brown Julie
Jones-Erickson Sandy
Erickson Ralph
© SunGard 2004-2007 Introduction to Oracle

Page 149

Section H: Advanced Queries

Lesson: Correlated Subqueries

«f Jump ta T0C

Correlated subqueries

A correlated subquery is a SELECT statement inside the WHERE clause of a SQL statement
which is correlated (or makes reference) to one or more columns in the enclosing SQL statement.

In the preceding subquery examples, each subquery was executed once, and the resulting value
was used by the WHERE clause of the main query. You can also compose a subquery that is
executed repeatedly, once for each candidate row considered for selection by the main query.

Correlated subqueries can also contain tables used by the main query. If this is the case, the
main query should define an alias in order to make references.

Example

SQL> SELECT swriden_last_name]|" || swriden_Ffirst_name "NAME",
swvcrse_desc ""COURSE™, swrregs_gpa "GPA™
FROM swvcrse, swriden, swrregs a
WHERE a.swrregs_pidm = swriden_pidm

AND a.swrregs_crn = swvCrse_crn

AND swriden_change_ind IS NULL

AND swrregs_gpa < (SELECT AVG(swrregs_gpa)

FROM swrregs b
WHERE b.swrregs_crn = a.swrregs_crn);

NAME COURSE GPA
Brown Julie Biology 2
Brown Julie Speech 2.8
Smith Robert Photography 3.1
Johnson Peter Zoology 2.3
© SunGard 2004-2007 Introduction to Oracle

Page 150

Section H: Advanced Queries

Lesson: Correlated Subqueries (Continued)

«f Jump ta T0C

Find most recent row

If the swrstdn (student standing) table contains both current and historical data, then a correlated
subquery can find the most recent row:

SQL> SELECT swriden_first _name, swriden_last name,
swrstdn_stdn_code STANDING, swvstdn_desc "'DESC"
FROM swriden, swrstdn a, swvstdn
WHERE swriden_pidm = a.swrstdn_pidm
AND a.swrstdn_stdn_code = swvstdn.swvstdn_code
AND swriden_change_ind IS NULL
AND a.swrstdn_activity_date =
(SELECT MAX(swrstdn_activity_date)
FROM swrstdn b
WHERE b.swrstdn_pidm = a.swrstdn_pidm);

Performance

The answer to joining tables and performance (or not joining tables) is the correlated subquery.
Correlated subqueries are most often used when a column evaluation in a WHERE clause is not
necessary in the select list.

Correlated subqueries require more system resources than regular subqueries, because the
subquery is executed once for each row in the main query. Regular subqueries are executed only
once, and the result used for all rows in the main query. For this reason, use correlated queries

sparingly.

Joins can often used to produce the same results as subqueries. In some cases the join will be
faster; in others, the subquery will be faster. Trying both approaches and comparing their
performance is recommended.

© SunGard 2004-2007 Introduction to Oracle
Page 151

Section H: Advanced Queries

Lesson: Dynamic SQL

< Jump to TOC

Definition
Dynamic SQL is SQL that creates executable SQL statements.

Usage

This type of SQL is useful when you want to create many similar SQL statements with different
values without having to prompt for values using parameters. You can send the output of
dynamically created statements to a file that can be executed later.

Example

SQL> SELECT *"SELECT * FROM *]| table_name |] =;*
FROM user_tables
ORDER BY table_name;

"SELECT*FROM*® | I TABLE_NAME]|]";"

SELECT
SELECT

FROM TWRACCD;
FROM TWVDETC;

SELECT * FROM HIGH_MATH;
SELECT * FROM HIGH_VERBAL;
SELECT * FROM SWBPERS;
SELECT * FROM SWRADDR;
SELECT * FROM SWRIDEN;
SELECT * FROM SWRREGS;
SELECT * FROM SWRSTDN;
SELECT * FROM SWRTEST;
SELECT * FROM SWVCRSE;
SELECT * FROM SWVSTDN;
SELECT * FROM SWVTERM;
SELECT * FROM TEMP;

kS

*

14 rows selected.

Don’t forget to include the semi colon (;) in your statement creation so that SQL*Plus knows
when each statement ends.

© SunGard 2004-2007 Introduction to Oracle
Page 152

Section H: Advanced Queries

Lesson: Self Check

- Jump to 100

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
Select the 1D and combined SAT scores from the SWRIDEN and SWRTEST tables, using an
equi-join. Join by PIDM.

Exercise 2
Create a report that contains the same information as above (using the same tables), but also
include students who have not taken the SAT test. Use an outer join.

© SunGard 2004-2007 Introduction to Oracle
Page 153

Section H: Advanced Queries

Lesson: Self Check (Continued)

<d Jump ta 100

Exercise 3
Return the PIDM(s) of the students who are in the SWRIDEN table but not in the SWRREGS
table, using the keyword MINUS.

Exercise 4

Find the person who has the highest SAT VERBAL score in the SWRTEST table. Show the
PIDM, Name, and test score for that person. (Hint: Use a subquery to determine the highest
score.)

© SunGard 2004-2007 Introduction to Oracle
Page 154

Section H: Advanced Queries

Lesson: Self Check (Continued)

<d Jump ta 100

Exercise 5

Create a query that will select the 1D, Full Name, most recent TERM, and classes registered for
that term from the SWRIDEN, SWVCRSE and SWRREGS tables. (Hint: Use a correlated
subquery to obtain the most recent TERM_CODE for each person.)

Exercise 6

Create a SQL statement to create dynamic SQL that will issue a query against all of your tables,
returning the number of records per table that belong to Julie Brown (Hint: Get Julie’s PIDM
first). Execute the SQL that you create to make sure it works correctly.

© SunGard 2004-2007 Introduction to Oracle

Page 155

Section I: Insert, Update and Delete

Lesson: Overview

- Jump ta 100

Introduction

Throughout the previous sections, we have discussed retrieving data from the database. This
section covers data manipulation: inserting, removing, and updating data within a table. More
commonly, end users perform these tasks through a different software application, such as an
Oracle Forms application.

Through a Forms application (such as Banner), a user can make changes to a few rows of data,
but larger changes or mass updates require SQL*Plus. For example, what if 10,000 rows in the
swriden table contained an invalid change indicator? An end user could query rows with the
faulty indicator through a form and make the corrections. However, making corrections one at a
time would certainly be tedious.

Objectives
At the end of this section, participants will be able to write statements which
e insert new records into a table
e update existing records in a table
e remove records from a table
e control data manipulation through the use of transactions to save and undo changes to
data.

© SunGard 2004-2007 Introduction to Oracle
Page 156

Section I: Insert, Update and Delete

Lesson: Overview (Continued)

- Jump to 100

Section contents

(@ YT RV .Y 156
TS =T o OO PPURRRP 158
V[0 o] (=T g EST=T o SRR 159
INSErt — DEfaUIt IN VAIUBS.......ooiiiiiecci ettt ebe e eabee s 161
UPGAEE. ...t ettt b bbbt n bbb 162
Y =T (o =3 PO UR ST 163
1< =] (=TT 165
IS (ot o] LTSN 166
1= L O 1 To] 168
© SunGard 2004-2007 Introduction to Oracle

Page 157

Section I: Insert, Update and Delete

Lesson: Insert

«f Jumpto T0C

Purpose
Add a row to a table or a view’s base table.

INSERT INTO table [view]([columnl] [,column2] ..)
VALUES (exprl [,expr2] ..);

SQL> INSERT INTO swvcrse (swvcrse_crn, swvcrse_desc,
Swvcrse_activity_date)
VALUES (10025, "ENGLISH", SYSDATE);

Abbreviated version

If all the columns of a table are being inserted in a table, the columns can be omitted from the
statement. The above statement might be abbreviated:

SQL> INSERT INTO swvcrse
VALUES (10025, "ENGLISH", SYSDATE);

Note: Omitting column references is a great shortcut when doing hands-on manipulations, but
should never be used in a stored procedure. If the definition of a table changes in the future, the
stored statements without column references will become invalid.

Insert via subquery

Inserts can be accomplished using a subquery from another table. The same number of rows
returned from the subquery will be inserted into the table.

In the following example, we want to insert students into the SWRSTDN table for those that
have an average course GPA of 3.5 or higher (honor students, so they will be marked with 'HS").

SQL> INSERT INTO swrstdn (swrstdn_pidm, swrstdn_stdn_code,
Swrstdn_stdn_date, swrstdn_activity date)
SELECT swrregs_pidm,
"HS*,
"01-JAN-06",
SYSDATE
FROM swrregs
GROUP BY swrregs_pidm
HAVING AVG(swrregs_gpa) >3.5;

© SunGard 2004-2007 Introduction to Oracle
Page 158

Section I: Insert, Update and Delete

Lesson: Multi-table Insert

«f Jump ta 100

Multi-Table Inserts

Date may be inserted into multiple tables at one time using a special version of the INSERT
statement. There are conditional and unconditional muli-table inserts.

NOTE: The order of the tables into which Oracle inserts data is not determinate. Therefore,
before issuing a multi-table insert statement, especially in parent/child relationships, you should
defer any constraints and disable any triggers that depend on a particular table order for the
multi-table insert operation.

If using a sequence in a multi-table insert, supply the sequence information in the Values clause
and not the Select Subquery.

Unconditional Multi-Table Inserts

The following syntax can be used to perform an unconditional multi-table insert. Records will
be inserted into all tables specified.

INSERT ALL
INTO tablel [view] ([columnl] [,column2] ..
VALUES (exprl [,expr2] .)
INTO table2 [view] ([columnl] [,column2] ..
VALUES (exprl [,expr2] ..)

SELECT <column_name> <constant> . . .
FROM <table_name>;

© SunGard 2004-2007 Introduction to Oracle
Page 159

Section I: Insert, Update and Delete

Lesson: Multi-table Insert (Continued)

«f Jump ta 100

Conditional Multi-Table Inserts
To insert data into multiple tables based on certain conditions, the following syntax is used:

INSERT ALL | FIRST
WHEN conditionl THEN
INTO tablel [view] ([columnl] [,column2] ..
VALUES (exprl [,expr2]..)
WHEN condition2 THEN
INTO table2 [view] ([columnl] [,column2] ..
VALUES (exprl [,expr2] ..)
[ELSE
INTO table99 [view] ([columnl] [,column2] ..
VALUES (exprl [,expr2] .)I]
SELECT <column_name> <constant>

FROM <table name>;

If the keyword ALL is used, all the WHEN conditions will be evaluated for each row returned
from the Select statement.

If the keyword FIRST is used, the WHEN conditions will be evaluated until a true condition is
found. After the first true condition is found, the remaining WHEN statements are skipped.

The ELSE condition is optional and if the row does not meet any of the WHEN conditions, the
ELSE clause will be executed. If no ELSE clause is supplied and the row does not match any of
the WHEN conditions, no action is taken on that row.

© SunGard 2004-2007 Introduction to Oracle
Page 160

Section I: Insert, Update and Delete

Lesson: Insert — Default in Values

<d Jump ta 100

DEFAULT in Values

When issuing an INSERT INTO and VALUES clause, the keyword DEFAULT may be used to
specify that Oracle should use the default value assigned for the column, if defined.

INSERT INTO table 1 VALUES (1, DEFAULT);
If no default value has been defined for the column, null inserted.

They keyword DEFAULT is available only in the VALUES clause and will work with standard
and multi-table inserts.

© SunGard 2004-2007 Introduction to Oracle
Page 161

Section I: Insert, Update and Delete

Lesson: Update

«f Jump to T0OC

Purpose
Change existing column values within a table or in a view’s base table.

UPDATE table [view]
SET column = expr [,column = expr] [.]
[WHERE condition];

SQL> UPDATE swrtest
SET swrtest _sat math = 490
WHERE swrtest_pidm = 12340
AND swrtest_test date="01-MAR-05";

Subqueries
Subqueries may also be used in the update WHERE condition.

SQL> UPDATE swrstdn
SET swrstdn_stdn _code = "HS*
WHERE swrstdn_pidm in
(SELECT swrregs_pidm
FROM swrregs
GROUP BY swrregs_pidm
HAVING AVG (swrregs_gpa) > 3.5);

DEFAULT in Values
When issuing an UPDATE, the keyword DEFAULT may be used to specify that Oracle should
use the default value assigned for the column, if defined.

UPDATE tablel

SET columnl = DEFAULT
WHERE condition;

If no default value has been defined for the column, null is used.

© SunGard 2004-2007 Introduction to Oracle
Page 162

Section I: Insert, Update and Delete

Lesson: Merge

< Jump ta 100

Purpose

The MERGE statement acts like a combination insert and update statement. If the ON condition
is met indicating a matching record exists, the UPDATE path is followed, otherwise the INSERT
path is followed.

MERGE INTO tablel
USING table2 | view
ON (tablel.columnl = table2.columnl .)
WHEN MATCHED THEN
UPDATE SET tablel.column3 = {exprl} ..
WHEN NOT MATCHED THEN
INSERT (tablel.columnl, tablel.column2 ..)
VALUES (table2.columnl, {exprl} .);

Restrictions
You cannot upate a column referenced in the ON clause. Both INSERT and UPDATE
statements are required.

© SunGard 2004-2007 Introduction to Oracle
Page 163

Section I: Insert, Update and Delete

Lesson: Merge (Continued)

< Jump to [0C

Merge in Oracle 10G
Oracle (10g) has made some enhancements to the merge statement.

1. There can be just an insert or just and update statement — both are no longer required

2. A WHERE clause may be added to an insert or update to restrict certain rows from being
updated or inserted.

3. The join of source to target (ON Clause) can be eliminated for a merge with only an

INSERT statement, allowing you to insert all rows from the source into the target:
MERGE INTO swriden_history
USING swriden

ON (1 = 0)
WHEN NOT MATCHED THEN
INSERT

VALUES (swriden.swriden_pidm, swriden.swriden_id,
swriden.swride_last name,
Swriden.swriden_first name, swriden.swriden_mi,
swriden.swriden_change_ind)
WHERE swriden_change_ind is null;

4. DELETE clause available with the WHEN MATCHED or UPDATE clause (not
available on the WHEN NOT MATCHED or INSERT clause). DELETE must have a
WHERE clause.

MERGE INTO tablel
USING table2 | view
ON (tablel.columnl = table2.columnl .))
WHEN MATCHED THEN
UPDATE SET tablel.column3 = {exprl} ..
DELETE WHERE (tablel.columnX = exprl ..)
WHEN NOT MATCHED THEN
INSERT (tablel.columnl, tablel.column2 .)
VALUES (table2.columnl, {exprli} .);

© SunGard 2004-2007 Introduction to Oracle
Page 164

Section I: Insert, Update and Delete

Lesson: Delete

«d Jump to 100

Delete

Deleting rows from a table is quite simple; in fact, it is too simple. Consider the following
syntax:

DELETE [FROM] <table>
[WHERE <column_name> condition];

SQL> DELETE FROM swrtest
WHERE swrtest_pidm = 12341
AND swrtest_sat _verbal = 530
AND swrtest_sat _math = 580;

Deleting entire tables

What will occur if the delete statement is run without the optional WHERE clause, or replacing
<table> with swriden?

SQL> DELETE swriden;
12 rows deleted.
SQL> SELECT * FROM swriden;

no rows selected

A good way to make sure you are deleting the right number of rows is to write a select statement
with the same WHERE criteria as the delete statement. If the select statement returns the correct
data, change the SELECT portion of the statement to DELETE and use the same WHERE.

© SunGard 2004-2007 Introduction to Oracle
Page 165

Section I: Insert, Update and Delete

Lesson: Transactions

«f Jumpto T0C

What is a transaction?
A transaction is defined as a change to the database since the last COMMIT.

Commit

Makes permanent the changes made to the database. While working in SQL, changes can be
viewed after a command is run on the database. For instance, if a person was deleted from the
swriden table while in SQL*Plus, you could view these changes. This is called an implied
commit. This does not mean that the change has been made permanent to the database.

To make the change permanent, use the COMMIT command.

SQL> DELETE FROM swriden
WHERE swriden_last _name = "JONES";

SQL> COMMIT;

Note: Oracle recommends that every transaction end explicitly with a COMMIT before
disconnection from Oracle. If a program terminates abnormally, the last uncommitted
transaction is rolled back. A normal exit from most Oracle applications causes the current
transaction to be committed.

Rollback

Use ROLLBACK to undo work within the current transaction.
ROLLBACK [TO SAVEPOINT <savepoint>];

SQL> DELETE FROM swriden
WHERE swriden_last_name = "JONES";

SQL> ROLLBACK;

You must issue a ROLLBACK before you issue a COMMIT, before you exit SQL*Plus, or
before you issue a DDL statement (CREATE/ALTER/DROP discussed later).

© SunGard 2004-2007 Introduction to Oracle
Page 166

Section I: Insert, Update and Delete

Lesson: Transactions (Continued)

«f Jump to T0OC

Savepoint

Identifies a point in the current transaction to which you can later roll back.
SAVEPOINT <savepoint>

SQL> DELETE FROM swriden

WHERE swriden_last name = "JONES";
SQL> SAVEPOINT spil;
SQL> DELETE FROM swriden

WHERE swriden_last_name = "SMITH";
SQL> SAVEPOINT sp2;
SQL> ROLLBACK TO SAVEPOINT sp1l;

At this point the SMITH delete has been “rolled back” or the data restored. If you were to
commit at this point, the only rows deleted woul be the JONES records. You may do additional
processing or roll back the entire transaction.

If you want to rollback not to just one savepoint, but roll back the entire transaction, issue the

ROLLBACK statement without any savepoint parameter. All statements at all savepoints will be
rolled back.

Re-using a savepoint name moves the savepoint to the new location. If you re-use a savepoint
name you cannot roll back to the old location.

© SunGard 2004-2007 Introduction to Oracle
Page 167

Section I: Insert, Update and Delete

Lesson: Self Check

«f Jump to T0OC

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1

Insert a new student in the SWRIDEN table using your own name, PIDM 2045 and 1D 432G.
Do not use a middle name. (HINT: Make sure you are providing data to all required columns —
check for NOT NULL columns)

Exercise 2

Add a new student profile record in SWBPERS for the new student added in Exercise 1, using
the following information:

Activity Date Current system date
Social Security Number 124-62-8747

Birth Date Unknown (leave null)
Marital Code Unknown (leave null)
Sex Female

Confidential Indicator Y

Note: Check the description of the table for column size constraints.

Exercise 3
Create a savepoint named SP1.

© SunGard 2004-2007 Introduction to Oracle
Page 168

Section I: Insert, Update and Delete

Lesson: Self Check (Continued)

«f Jump to 100

Exercise 4
Insert another row into the SWRIDEN table, but prompt the operator for each variable except
for the activity date.

Exercise 5

Update the new student profile record created in Exercise 2 so that the Social Security number is
635-56-1525 and the marital code is 'S' (SWBPERS).

Exercise 6
Roll back to savepoint SP1.

Exercise 7
Commit your changes.

© SunGard 2004-2007 Introduction to Oracle
Page 169

Section I: Insert, Update and Delete

Lesson: Self Check (Continued)

Exercise 8
Delete the student profile record created in Exercise 2 (SWBPERS).

Exercise 9
Delete the SWRIDEN record you created in Exercise 1.

Exercise 10
Commit your changes.

© SunGard 2004-2007 Introduction to Oracle
Page 170

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Overview

< Jump ta 100

Introduction

In the previous sections, we have both retrieved and manipulated data from tables. A table is a
database object within a schema. In this section, we will discuss how to create and maintain
tables and get introduced to other schema objects that can be created.

Objectives
At the end of this section, participants will be able to create, maintain, and secure:

e Tables
e |Indexes

© SunGard 2004-2007 Introduction to Oracle

Page 171

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Overview (Continued)

< Jump to 100

Section contents

L@ = QY 1= PRSP 171
SCRBIMAS. ..ttt ettt e e be et e e ntaere e e areente s 173
Data Definition Language COmMMANGScccuriiiririieieiesiesie st 174
Creating @ TADIEoiee e e nre s 175
AREIING 8 TADIE ... 177
Adding and RemoviNg COIUMNSccveiiiiiiiiee et 178
(@00 11511 - 1[I SUSSPRORN 180
Referential Integrity CONSIIAINTScccviiieiicic i 182
TTUNCALE. ...ttt ettt ettt ettt e e bt e e s b bt e ek bt e e bb e e e bb e e e abb e e eabb e e e nbeeeenbeeennneeeas 184
INOEXES. ..ttt et e e a et e e te b e re et e e e e ra e reaneenneenres 185
CONCALENALEA INUEXESecveeieeeiieiie sttt et ste et esbeeteaneesreenseaneeareenneas 188
ST | 1 1o SRR USSSPRSSN 190
© SunGard 2004-2007 Introduction to Oracle

Page 172

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Schemas

< Jump ta 100

Schemas

Schemas may contain the following types of objects:
e Tables

Views

Clusters+

Database links+

Stand-alone stored functions and procedures

Indexes

Packages

Database triggers+

Sequences

Snapshots+

Profiles+

Roles+

Rollback segments+

Tablespaces+

+ These objects are not discussed in this manual; refer to Oracle’s SQL language reference
manual.

© SunGard 2004-2007 Introduction to Oracle
Page 173

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Data Definition Language
Commands

<d Jump ta 100

DDL commands
Data Definition Language (DDL) commands allow you to
e create, alter, and drop objects
e grant and revoke privileges and roles
e establish auditing options
e add comments to the data dictionary.

Implicit COMMITs

Oracle implicitly commits the current transaction before and after every Data Definition
Language statement. Consideration to database manipulations should be considered before using
DDL statements.

For a complete listing of DDL commands, see the Oracle SQL Language Reference Manual.

© SunGard 2004-2007 Introduction to Oracle
Page 174

Section J: Creating and Maintaining Tables
and Indexes

Lesson:

< Jump ta [0C

Naming a table or view

e Must begin with a letter, A-Z or a-z
e May contain letters, numbers, and the special character _ (underscore). The characters $
and # are also legal, but their use is discouraged

Creating a Table

e Case-insensitive; e.g., grades, GRADES, and GrAdEs are all the same table
e May be up to 30 characters in length
e May not duplicate the name of another table or view under the same schema
e May not duplicate an Oracle reserved word
Name Valid?
NATION Yes
1CONTINENT No; doesn’t begin with a letter.
NORTH AMERICA Yes
UPDATE No; Oracle reserved word.
TABLE1 Yes; but poor design for naming conventions.

Naming a column
Column names follow the same rules as those for table names. Columns with exactly the same

name in separate tables can be ambiguous, however. For instance, joining two tables both
containing "pidm" columns requires the use of TableName.ColumnName notation.

To avoid this ambiguity, Banner has appended the TableName to the front of each column name.
For example, columns in the SWRIDEN table appear as:

e swriden_pidm

e swriden_last_name

e swriden_first_name

Not only does this naming convention remove the ambiguity of the column’s table, but it makes
for very readable code. This is one of several conventions found within a Banner table’s design.
As you begin to explore your system’s tables and their structure, you will begin to recognize
many other standards and conventions.

Note: Give your tables and columns meaningful names. You have up to 30 characters - why not
use them?

© SunGard 2004-2007 Introduction to Oracle

Page 175

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Creating a Table (Continued)

< Jump to TOC

Data type

¢ VARCHAR2(n)
Variable length character string with a maximum length, n, of 4000 bytes.
e CLOB/BLOB/BFILE
Variable length character string containing up to 4 gigabytes, or 2°! - 1 bytes.
e NUMBER(p,S)
Numeric data type having a precision p and scale s.
o DATE
Valid dates range from Jan 1, 4712 BC to Dec 31, 9999 AD.

Syntax

CREATE TABLE [schema.]table

({ column data type [DEFAULT expr] [column_constraint] |
table_constraint }

[. { column data type [DEFAULT expr] [column_constraint]
table_constraint}] ..)

[AS subquery]

Example
SQL> CREATE TABLE hobbies

(hobbies_pidm NUMBER(8) NOT NULL,
hobbies_type_code VARCHAR2(10) DEFAULT *"UK*®,
hobbies_desc VARCHAR2(100) DEFAULT “UNKNOWN®,
hobbies_how_long NUMBER(3),
hobbies_yearly_cost NUMBER(11,2),
hobbies_solo_group VARCHAR2(2),
hobbies_activity date DATE DEFAULT SYSDATE);

© SunGard 2004-2007 Introduction to Oracle

Page 176

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Altering a Table

< Jump to 100

Methods
A table can be altered via any of the following methods:

Add a column

Redefine a column (data type, size, default value, change name)
Add an integrity constraint

Enable, disable, or drop an integrity constraint or trigger
Rename table

Syntax
ALTER TABLE [schema.]table

{

[ADD ({ column_element | column_constraint}

[, column_element | column_constraint}] .)]

[MODIFY (column_element [, column_element] ..)]

[DROP drop_clause] ..

[ENABLE enable clause] ..

[DISABLE disable clause] ..

[RENAME TO new_table_name]

[RENAME COLUMN old_column_name TO new_column_name 7]

© SunGard 2004-2007 Introduction to Oracle

Page 177

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Adding and Removing Columns

< Jump ta [0C

ALTER TABLE
SQL> ALTER TABLE twraccd
ADD (twraccd_effective_date DATE);
OR
SQL> ALTER TABLE twraccd
ADD (twraccd_effective _date DATE DEFAULT SYSDATE);

Removing a column
SQL> ALTER TABLE <table_ name> DROP COLUMN <column_name>;

Example:
ALTER TABLE twraccd
DROP COLUMN twraccd_effective date;

Mark Column Unused
You can also mark a column as unused. This removes it from the describe command and from
any select, insert or update statement. Essentially, it is no longer available for any use.

ALTER TABLE <tablename> SET UNUSED COLUMN <column_name>;

The difference between marking a column unused and dropping it is that an unused column still
retains the disk space associated with it. Even though the disk space is still considered in use,
you cannot re-instate the column. You can, however, remove the associated disk space by
issuing the following command:

ALTER TABLE <tablename> DROP UNUSED COLUMNS <column_names>;

This method may be used for very large tables where you may want to remove a column from
use, but not lock the table for the lengthy period it would take to remove the associated storage.
The storage removal can be scheduled for the evening or any time where the table has little or no
use.

© SunGard 2004-2007 Introduction to Oracle
Page 178

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Adding and Removing Columns
(Continued)

<d Jump ta 100

Redefining a column

SQL> ALTER TABLE swriden

MODIFY (last_name VARCHAR2 (30));
Table altered.

OR

SQL> ALTER TABLE swriden

MODIFY (last_name VARCHAR2 (30) DEFAULT "NONE®");
Table altered.

© SunGard 2004-2007 Introduction to Oracle
Page 179

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Constraints

< Jump ta [0C

Purpose
Constraints define the conditions under which data is valid.

The table_constraint syntax is a part of the table definition. An integrity constraint defined with
this syntax can impose rules on any columns in the table. The table constraint syntax may appear
ina CREATE TABLE or ALTER TABLE statement. The syntax can define any type of
integrity constraint except a NOT NULL constraint.

The column_constraint syntax is part of a column definition. In most cases, an integrity
constraint defined with this syntax can only impose rules on the column in which it is defined.

Column_constraint syntax that appears in a CREATE TABLE statement can define any type of
integrity constraint. Column_constraint syntax that appears in an ALTER TABLE statement can
only define or remove a NOT NULL constraint. To modify an integrity constraint, you must
drop the constraint and redefine it.

NOT NULL constraint

The NOT NULL constraint specifies that a column cannot contain a null value. If you do not
specify this constraint, the default is NULL.

SQL> ALTER TABLE hobbies
MODIFY (hobbies_type code NOT NULL);

CHECK constraint

The CHECK constraint explicitly defines a condition. To satisfy the constraint, each row in the
table must make the condition either TRUE or unknown (due to NULL).

Syntax: CONSTRAINT constraint_name CHECK (condition)

SQL> ALTER TABLE twraccd
ADD CONSTRAINT check_trans_type
CHECK (twraccd_trans_type IN (°C", "P"));

SQL> ALTER TABLE twraccd
ADD CONSTRAINT check_amount
CHECK (twraccd_amount <> 0);

© SunGard 2004-2007 Introduction to Oracle
Page 180

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Constraints (Continued)

< Jump ta [0C

PRIMARY KEY constraint
A PRIMARY KEY constraint designates a column or combination of columns as the table’s
primary key. To satisfy a PRIMARY KEY constraint, both of these conditions must be true:
e No primary key value can appear in more than one row in the table
e No column that is part of the primary key can contain a null

A table can have only one primary key.

SQL> ALTER TABLE swvterm
ADD CONSTRAINT PK_swvterm PRIMARY KEY
(swvterm_term_code);

If the column(s) used to create the primary key had previously been defined without the NOT
NULL constraint, Oracle will automatically assign NOT NULL constraints to those columns.

UNIQUE constraint

The UNIQUE constraint designates a column or combination of columns as a unique key. To
satisfy the condition, no two rows in the table can have the same value for the unique key. You
cannot designate the same column or combination of columns as both a unique key and the
primary key. Although you can have only one primary key for a table, a table can have several
unique keys.

SQL> ALTER TABLE twvdetc
ADD CONSTRAINT ung_detc_code UNIQUE
(twvdetc_code);

Unique constraints differ from primary key constraints in that they allow NULL values in the
column(s) defined in the constraint. Because of this difference, you may have multiple rows
with NULL values in columns that are part of a UNIQUE constraint.

© SunGard 2004-2007 Introduction to Oracle
Page 181

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Referential Integrity Constraints

< Jump to 10C

Purpose

A referential integrity constraint designates a column or combination of columns as a foreign
key, and establishes a relationship between that foreign key and a specified primary or unique
key called the referenced key. In this relationship, the table containing the foreign key is called
the child table, and the table containing the referenced key is called the parent table.

Conditions
To satisfy a referential integrity constraint, the following conditions must be met:
e The child and parent tables must be in the same database
e The value of the row’s foreign key must appear as a referenced key value in one of the
parent table’s rows. The row in the child table is said to depend on the referenced key in
the parent table

Keywords
A referential integrity constraint is defined in the child table. A referential integrity constraint
definition can include any of these keywords:
e Foreign key
Identifies the column or combination of columns in the child table that makes up the
foreign key. Only use this keyword when defining a foreign key with a table constraint
clause.
e References
Identifies the parent table and the column or combination of columns that make up the
referenced key. If you only identify the parent table and omit the column names, the
foreign key automatically references to the primary key of the parent table. The
referenced key columns must be of the same number and data types as the foreign key
columns.
e On delete cascade
Allows deletion of referenced key values in a parent table that have dependent rows in a
child table. This causes Oracle to automatically delete dependent rows from the child
table to maintain referential integrity. If you omit this option, Oracle forbids deletion of
referenced key values in the parent table that have dependent rows in the child table.

WARNING: ***NEVER*** create a table using this integrity constraint unless it is
directly applicable to your business rules and applications.

© SunGard 2004-2007 Introduction to Oracle
Page 182

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Referential Integrity Constraints
(Continued)

«f Jump to T0OC

Defined constraints

Before defining a referential integrity constraint in the child table, the referenced UNIQUE or
PRIMARY KEY constraint on the parent table must already be defined. Also, the parent table
must be in your own schema or you must have REFERENCES privileges on the columns of the
referenced key in the parent table. You cannot define a referential integrity constraint in a
CREATE table statement that contains an AS clause. Instead, create the table without the
constraint and add the constrain using the ALTER TABLE statement.

Note: You can define multiple foreign keys in a table. Also, a single column can be part of more
that one foreign key.

SQL> ALTER TABLE twraccd
ADD CONSTRAINT FK1_ twraccd_ INV_swvterm KEY
FOREIGN KEY (twraccd_term_code)
REFERENCES swvterm (swvterm_term_code);

Orphan Records
Adding a referential integrity constraint will fail if there are child records already in the table
without parent records. Either:

e Add parent record OR

e Remove orphan child records

© SunGard 2004-2007 Introduction to Oracle
Page 183

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Truncate

< Jump to 100

Purpose
TRUNCATE can be used to quickly remove all rows from a table.

Removing all rows with the TRUNCATE command is faster than removing them with the
DELETE command. No rollback information is created; thus the rows are permanently
removed.

Syntax
TRUNCATE TABLE [schema.]<table>;

Example
SQL> TRUNCATE TABLE old_scores;

© SunGard 2004-2007 Introduction to Oracle
Page 184

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Indexes

<« Jump to 10C

Purpose

Indexes are database structures that boost the performance of queries. Indexes are used in
conjunction with table columns. An index associates each distinct value of a column with the
rows in a table that contain that value. The column that has the index is called the key column.

Uniqueness

Some indexes can be used to enforce uniqueness among the values in a column. Such an index
is called a unique index. If a unique index is created, no two rows in the table may contain the
same value in the indexed column.

A query that references an indexed column in its WHERE clause can use the index. When a
query uses an index, Oracle searches the index for all the values that meet the condition specified
by the WHERE clause. If the query selects only the indexed column, the query can read the
indexed column values directly from the index rather than from the table.

ROWIDs

For each value, the index also identifies the locations, or ROWIDs, of rows in the table having
that value. If the query selects data in addition to the indexed value, Oracle finds the rows in the
table based on the ROWIDs. Searching by ROWID is the fastest way for Oracle to locate a
single row.

When to use indexes

Indexes improve the performance of queries that select a small percentage of rows from a table.
As a general guideline, you should use indexes for queries that select less than 20% or 25% of
table rows.

Be selective in the number of indexes created on a table as they can slow performance.

Full table scans

If a query does not use an index, Oracle must perform a full table scan, reading all rows of a
table sequentially. Oracle examines each row to determine whether it meets the criteria of the
query’s WHERE clause. Indexed queries can be considerably faster than finding the row with a
full table scan; however, a query that selects more than 20% or 25% of a table’s rows may be
performed faster by a full table scan than by an indexed query.

© SunGard 2004-2007 Introduction to Oracle
Page 185

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Indexes (Continued)

< Jump to 10C

Choosing columns to index

Index columns that are used frequently in WHERE clauses

Index columns whose MAX and MIN values are selected frequently

Index columns that are used frequently to join tables in SQL statements

Index columns with high selectivity. Selectivity is high if few rows have the same value
in the key column. Unique indexes are the most selective and the most effective in
optimizing query performance

e Do not index columns with few distinct values.** Such columns have low selectivity
Do not index columns in small tables. If a table uses fewer than 5 data blocks, a full table
scan may return rows faster than an indexed query. You can determine how many data
blocks a table uses by examining the ROWIDs of the table’s rows. For example, this
query returns the number of blocks used by the swrtest table:

SQL> SELECT COUNT (DISTINCT(SUBSTR(ROWID,1,8)]SUBSTR(ROWID,15,4)))
FROM swrtest;

Do not index columns that are frequently modified using the UPDATE, INSERT, and DELETE
statements. These statements not only update the rows in the table; they must also update the
index as well.

** Histograms

There are times when an index on a column with low cardinality (few distinct values) is
necessary and desirable. Such columns might contain True/False or Yes/No or other such values
where Oracle assumes an even distribution of records to each value.

For example, if you know your data has significantly more Yes values than No values, and you
frequently select rows with the value No, you may want to index the column. To ensure the
index on that column is used, it must also contain a histogram which tells Oracle that the
distribution of No values is much lower than Yes values, which makes the index more cost
effective.

This topic is covered more extensively in the advanced Oracle courses like the DBA courses or
SQL Tuning courses.

© SunGard 2004-2007 Introduction to Oracle
Page 186

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Indexes (Continued)

«f Jump to T0OC

Syntax
To create an index after you have created the table:

CREATE [UNIQUE] INDEX [schema.]index
ON [schema.]table (column, [column,] [column,] .)

Primary key and Unique indexes can be created at the same time as you create a table:

CREATE TABLE new_table (
KEY_VALUE VARCHAR2 (50) NOT NULL,
INDICATOR CHAR(1) NOT NULL,
DESCRIPTION VARCHAR2(400),
ACTIVITY_DATE DATE DEFAULT SYSDATE
CONSTRAINT nn_activ_date NOT NULL,
CONSTRAINT PK_NEW_TABLE PRIMARY KEY (KEY_VALUE));

OR
CREATE TABLE mytable
(id NUMBER
PRIMARY KEY USING INDEX
(CREATE INDEX pk_myind ON mytable(id)),
identifier NUMBER,
information VARCHAR2(30),
CONSTRAINT mytableunique
UNIQUE (i1dentifier)
USING INDEX (CREATE INDEX mytableidx ON
mytable(identifier)));

When creating Primary Key or Unique constraints, Oracle will automatically create a unique
index for the columns in the Primary Key or Unique constraints even if not explicitly specified.

© SunGard 2004-2007 Introduction to Oracle
Page 187

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Concatenated Indexes

<« Jump to 10C

Purpose

An index can be made up of more than one column. Such an index is called a concatenated
index.

Concatenated indexes are useful in providing selectivity. Sometimes two columns with low
selectivity can be combined to produce a concatenated index with high selectivity. If all the
selected columns are included in a concatenated index, the query can be satisfied entirely by an
index search and avoid access to the table altogether. The columns that make up a concatenated
index are referred to as the concatenated key.

SQL statements and concatenated indexes

Whether or not a SQL statement uses a concatenated index is determined by the column
contained in the WHERE clause of the SQL statement and the order of the columns in the
CREATE INDEX statement. A query can only use a concatenated index if it references a
leading portion of the index in the WHERE clause. The leading portion of a concatenated index
refers to the first column specified in the CREATE index statement.

Columns

An index can contain a maximum of 16 columns. You can create several indexes on different
columns (or different combinations of columns) in the same table. Oracle imposes no limits on
the number of indexes you can create on a single table.

Syntax

CREATE [UNIQUE] INDEX [schema.]index
ON [schema.]table (column, [column,] [column,] .)

Ordering columns in concatenated indexes

If only one column of the concatenated index is used frequently in WHERE clauses, place that
column first in the create INDEX statement.

If more than one column is used frequently in WHERE clauses, place the most selective column
first in the CREATE INDEX statement.

SQL> CREATE INDEX pidm_term_index
ON twraccd (twraccd_pidm, twraccd_term_code);

SQL> CREATE UNIQUE INDEX swriden_key index
ON swriden (swriden_pidm, swriden_id,
swriden_last_name, first_name,
swriden_mi, swriden_change_ind);

© SunGard 2004-2007 Introduction to Oracle
Page 188

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Comments and Data Dictionary
Views

«f Jump ta [0C

Object Comments

Comments can be placed on tables, views and columns in the database to provide internal
documentation on what these objects are used for, and also aid developers and report writers in
determining which table or columns to use to manipulate or retrieve data.

To add a comment to a table:

SQL> comment on table <table_name> is “<enter your comment here>”;

To add a comment on a column:

SQL> comment on column <table name>_<column_name> is “<enter your
comment here>~;

Data Dictionary Views

There are several sets of data dictionary views in the database that will help you find information
about an object.

USER_% - information on objects you OWN

ALL_% - information on objects you own PLUS objects owned by other people that you can see
DBA_% - information about all objects in the database (access restricted to users with high level
privileges like DBAS).

Typical views include

= USER TABLES = USER TAB_COLUMNS
= USER_INDEXES = USER _IND COLUMNS
= USER _CONSTRAINTS = USER_CONS_COLUMNS
= USER TAB_COMMENTS = USER COL_COMMENTS

To find other USER_ views in the data dictionary:

SQL> select view_name from all_views where view_name like “USER%”;

© SunGard 2004-2007 Introduction to Oracle
Page 189

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Self Check

< Jumpto T0C

Exercise 1
To make data retrieval faster, create an index for PIDM on SWRIDEN.

Exercise 2

Create a relationship between the validation table TWVDETC and the repeating table
TWRACCD. TWVDETC should have the primary key on TWVDETC_CODE and
TWRACCD should have the foreign key on TWRACCD_DETC_CODE.

Exercise 3
Create a table called TEMP_XX (where XX is your user number) with the following structure:
MYNUMBER NUMBER (8)

TEXT VARCHAR?2 (30)

MYDATE DATE

MESSAGE VARCHAR?2 (50)

© SunGard 2004-2007 Introduction to Oracle

Page 190

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Self Check (Continued)

< Jumpto T0C

Exercise 4
Add a column called SWRADDR_COUNTRY_CODE, type VARCHAR2(10) NOT NULL to
the swraddr table.

What happens when you try to add a NOT NULL column to an existing table? How might you
fix it?

Exercise 5
Add a constraint on the SWRREGS table to the SWVCRSE table on CRN. What happens?

Correct the problem and try again.

Why will the constraint still not create? How would you fix this problem (Hint: Use a minus
query to identify CRN records that do not match)?

© SunGard 2004-2007 Introduction to Oracle
Page 191

Section J: Creating and Maintaining Tables
and Indexes

Lesson: Self Check (Continued)

Exercise 6
Add a table comment for the SWRIDEN, SWRADDR, and SWBPERS tables.

Exercise 7
Locate your new indexes and constraints in the user_indexes, user_constraints, and
user_cons_columns data dictionary views.

© SunGard 2004-2007 Introduction to Oracle
Page 192

Section K: Creating and Maintaining Other
Database Objects

Lesson: Overview

< Jumpto T0C

Introduction

In the previous sections, we learned how to create and maintain tables and indexes. These are
only two of the many types of Objects that make up a database. In this section we will explore
other objects and discuss security on objects.

Objectives

At the end of this section, participants will be able to create and maintain:
o Views
e Sequences
e Synonyms

Security on objects will also be discussed.

Section Contents

OVEIVIBW ...ttt ettt et s b e e e e st e e beesteese e e be et e aae e s teesteaseeabeentesneestaennesneenraeneas 193
CrEALING VIBWS ...ttt bbbttt bbbt bbbt b et e bbbt st b e e ene s 194
)Y 1010)Y] 11O PR 197
SBOUEBINCES ...ttt bttt bbb bbb n e ne s 198
Lo] Y2 USRSSPRSSN 200
L] O 1= PP USS 202
© SunGard 2004-2007 Introduction to Oracle

Page 193

Section K: Creating and Maintaining Other
Database Objects

Lesson: Creating Views

< Jump ta [0C

Views

A view is a logical table that allows you to access data from other tables and views. A view
contains no data itself. The tables upon which a view is based are called base tables.

Purpose

Views are used to:
e provide an additional level of table security, by restricting access to a predetermined set
of rows and/or columns of a base table
¢ hide data complexity. A view may be used to act as one table when actually several
tables are used to construct the results
e present data from another perspective. For example, views provide a means of renaming
columns without actually changing the base table’s definition

Syntax

CREATE [OR REPLACE] [FORCE | NOFORCE]
VIEW [schema.]view [(alias [, alias] ..)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]

¢ ORREPLACE
Recreates the view if it already exists. Use this option to change the definition of an
existing view without dropping, recreating, and regranting object privileges previously
granted on it.

e FORCE | NOFORCE
FORCE creates the view regardless of whether the view’s base tables already exist within
the owner’s schema or the owner of the view has privileges to the base tables.
NOFORCE creates this view only if the base tables exist within the owners schema or the
owner of the view has privileges to the base tables.

e WITH CHECK OPTION
Specifies that inserts and updates performed through the view must result in rows that the
view query can select.

© SunGard 2004-2007 Introduction to Oracle
Page 194

Section K: Creating and Maintaining Other
Database Objects

Lesson: Creating Views (Continued)

< Jump to T0C

Constraint

The name assigned to the CHECK OPTION constraint. If the constraint is omitted, then Oracle
automatically assigns the constraint a name of the form, SYS_cn, where n is an integer that
makes the constraint name unique within the database.

SWVTELE
In our training exercises, there exists one view, swvtele.

SQL> SELECT * FROM swvtele;

P 1DM NAME PHONE

12340 Brown, Julie (610) 562-4789

12341 Smith, Robert (215) 795-4323

12342 Johnson, Peter (610) 562-4789

12343 Jones-Erickson, Sandy (610) 324-6734

12344 Erickson, Ralph (850) 674-3213
Script

The view was created using the following script:

SQL> CREATE OR REPLACE VIEW swvtele
(swvtele_pidm, swvtele_name, swvtele phone)
AS SELECT swriden_pidm, swriden_last_name]|
", "llswriden_first_name||" "|| swriden_mi,
"("|Iswraddr_phone_areal]|")"
|l SUBSTR(swraddr_phone_number,1,3)
I1°-"11 SUBSTR(swraddr_phone_number,4,4)
FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm
AND swriden_change_ind IS NULL;

© SunGard 2004-2007 Introduction to Oracle
Page 195

Section K: Creating and Maintaining Other
Database Objects

Lesson: Creating Views (Continued)

< Jump to 100

Check option

SQL> CREATE OR REPLACE VIEW SWVSUSP
(SWVSUSP_PIDM, SWVSUSP_STDN_CODE,
SWVSUSP_STDN_DATE, SWVSUSP_ACTIVITY_DATE)
AS SELECT SWRSTDN_PIDM, SWRSTDN_STDN_CODE,

SWRSTDN_STDN_DATE, SWRSTDN_ACTIVITY_DATE

FROM SWRSTDN

WHERE SWRSTDN_STDN_CODE = *"SS*

WITH CHECK OPTION;

With the check option on this view, users will get the following error when trying to change a
student’s standing:

SQL> UPDATE SWVSUSp
SET swvsusp_stdn_code = "GS*;
*
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

© SunGard 2004-2007 Introduction to Oracle
Page 196

Section K: Creating and Maintaining Other
Database Objects

Lesson: Synonyms

< Jump to 100

Purpose

Synonyms are used for security and convenience. Creating a synonym for an object allows you
to reference the object without specifying its owner (if the synonym is public) provide another
name for the object.

Syntax

CREATE [PUBLIC] SYNONYM [schema.]synonym
FOR [schema.]object

Example

SQL> CREATE PUBLIC SYNONYM standing
FOR swrstdn;

© SunGard 2004-2007 Introduction to Oracle
Page 197

Section K: Creating and Maintaining Other
Database Objects

Lesson: Sequences

< Jump ta [0C

Purpose

A sequence is a database object from which multiple users may generate unique integers. You
can use sequences to automatically generate primary keys.

Syntax

CREATE SEQUENCE [schema.]sequence
[INCREMENT BY integer]
[START WITH integer]
[MAXVALUE integer | NOMAXVALUE]
[MINVALUE integer | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE integer | NOCACHE]
[ORDER | NOORDER]

e INCREMENTED BY
Specifies the interval between sequence numbers. This value can be any positive or
negative integer, but cannot be 0. If the increment is negative, the sequence descends. If
the increment is positive, the sequence ascends. If omitted, the interval defaults to 1.

¢ MAX & MIN VALUE
Specifies the sequence’s minimum or maximum value. These integer values can have 28
or fewer characters. Ranges are 10°" to -10%.

e CYCLE
Specifies that a sequence will continue to generate values after reaching its MIN or
MAX. The value generated is the MIN or MAX specification.

e CACHE
Specifies how many values of the sequence Oracle preallocates and keeps in memory for
faster access. The minimum value for this parameter is 2.

¢ ORDER
Guarantees sequence numbers are generated in the order specified. (ONLY applies to
Real Application Clusters or RAC)

e START WITH
Specifies the beginning value generated by the sequence. The MIN and MAX values
must be less than or equal to START WITH.

Example

SQL> CREATE SEQUENCE pidm_seq
START WITH 13000;

© SunGard 2004-2007 Introduction to Oracle
Page 198

Section K: Creating and Maintaining Other
Database Objects

Lesson: Sequences (Continued)

< Jump to 100

Accessing and incrementing

Once a sequence is created, you can access its value in SQL statements using the pseudo-
columns CURRVAL and NEXTVAL. CURRVAL returns the current value of the sequence,
NEXTVAL increments the sequence and returns the new value.

SQL> INSERT INTO swriden
(swriden_pidm, swriden_id, swriden_last_name,
swriden_fTirst_name, swriden_mi, swriden_change_ind,
swriden_activity_date)

VALUES (pidm_seq.NEXTVAL, "254915791", "McMahon®, "Stephen®,
*J", NULL, SYSDATE):

© SunGard 2004-2007 Introduction to Oracle

Page 199

Section K: Creating and Maintaining Other
Database Objects

Lesson: Security

< Jump ta [0C

Brief overview

System security is a complicated and lengthy topic and is beyond the scope of this course.
However, there are a few minor aspects of security that should be discussed at this time in
association to the creation of database objects.

GRANT privileges

Creating a table or view (or any database object), does not automatically grant other users the
access to retrieve or manipulate data from those tables. The owner must explicitly GRANT
privileges to other users within the database.

GRANT object_priv [ALL] [(column)]
ON [schema.]object TO user [PUBLIC]
[WITH GRANT OPTION];

e OBJECT_PRIV
An object privilege to be granted. You can substitute any of these values:

Object Tables Views Sequences
Privilege
ALTER X X
DELETE X X
INDEX X
INSERT X X
REFERENCES X
SELECT X X X
UPDATE X X
ALL
Grants all the privileges to the grantee
COLUMN

Specifies a table or view column on which privileges are granted. You can only specify
columns when granting the INSERT, REFERENCES, or UPDATE privilege. If you do
not list columns, the grantee has the specified privilege on all the columns in the table or
view

ON

Identifies the object on which the privileges are granted. If you do not qualify object
with schema, Oracle assumes the object is in your own schema

TO
Identifies users to which the object privilege is granted. PUBLIC grants object privileges
to all users

© SunGard 2004-2007 Introduction to Oracle

Page 200

Section K: Creating and Maintaining Other
Database Objects

Lesson: Security (Continued)

< Jump to 100

WITH GRANT OPTION
Allows the grantee to grant the object privileges to other users.

SQL> GRANT SELECT
ON swriden
TO PUBLIC;

SQL> GRANT ALL
ON swriden
TO trainOl;

SQL> GRANT UPDATE (swriden_id, swriden_last name, swriden_ first_name,
swriden_mi, swriden_change_ind,

swriden_activity_date)
ON swriden

TO train02
WITH GRANT OPTION;

SQL> GRANT SELECT, INSERT
ON swriden
TO trainlO;

© SunGard 2004-2007

Introduction to Oracle
Page 201

Section K: Creating and Maintaining Other
Database Objects

Lesson: Self Check

< Jump to 100

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1

Create a view called SWVADDR_XX (where XX is your user number) which contains a
person’s first name, last name (combine it into one column called name), city, state, and zip
based on the SWRIDEN and SWRADDR tables.

Exercise 2
Retrieve all the rows from the new view.

Exercise 3

Grant the right to select from the view to a person sitting next to you. Make sure someone gives
you the right to select from his/her new view.

Exercise 4

Try to select all columns from the view you were just granted access to in Exercise 3. What
happened?

© SunGard 2004-2007 Introduction to Oracle
Page 202

Section K: Creating and Maintaining Other
Database Objects

Lesson: Self Check (Continued)

< Jump to 100

Exercise 5

Now, put the owner name in front of the table, in the syntax below. Did you get results?
SELECT * FROM <owner.table_ name>

Exercise 6

Because you have to specify the owner each time you are referring to the view, create a synonym
to alleviate this.

Exercise 7
Select all columns from the view. You should not have to specify the owner in front of the view.

© SunGard 2004-2007 Introduction to Oracle
Page 203

Section K: Creating and Maintaining Other
Database Objects

Lesson: Self Check (Continued)

< Jump ta 100

Exercise 8
Create a sequence which will be used to generate a new PIDM. Find out what the first value
should be by finding the maximum existing PIDM +1. Insert a new row into the SWRIDEN

using your sequence to generate the PIDM.

© SunGard 2004-2007 Introduction to Oracle
Page 204

Section L: SQL*Loader & External Tables

Lesson: Overview

<« Jump to 100

Introduction

SQL*Loader gives the capability to easily load data from a flat file to database tables. Itis a
great tool to use when converting existing legacy data into the Banner tables. Although we will
cover only the basics of SQL*Loader in this section, the utility is quite powerful and has many
options.

SQL*Loader can:

¢ |oad data from multiple datafiles of different file types

¢ handle fixed-format, delimited-format, and variable-length records

e manipulate data fields with SQL functions before inserting the data into database

columns

e support a wide range of data types, including DATE, BINARY, PACKED DECIMAL,
and ZONED DECIMAL, INTEGER
load multiple tables during the same run, loading selected rows into each table packages
combine multiple physical records into a single logical record
treat a single physical record as multiple logical records
generate unique, sequential key values in specified columns
use the operating system’s file or record management system to access datafiles
load data from disk or tape
provide thorough error reporting capabilities, so you can easily adjust and load all records
use high-performance “direct” loads to load data directly into database files without
Oracle processing

External Tables

External tables are data stored outside the Oracle database but referenced inside of Oracle as a
standard Oracle table. External tables are discussed in this section as they use some of the syntax
and functionality of the SQL*Loader product.

Intended audience

SQL is used for all types of database activities by many types of users. However, in order for
attendees to receive the optimum benefit of this training, Sungard Higher Education recommends
that prospective students come from one of the following groups:

System administrators

Database administrators

Security administrators

Application programmers

Decision support system personnel

© SunGard 2004-2007 Introduction to Oracle
Page 205

Section L: SQL*Loader & External Tables

Lesson: Overview (Continued)

< Jumpto T0C

Objectives
At the end of this section, participants will be able to
¢ define the basic file types which are required to load data
e invoke the SQL*Loader
o analyze output files for errors.
e describe external tables

Section contents

OVBIVIBW ...ttt bbb bbb bbbt bbbt e et et et e st st e reene s 205
ReqUIred INPUL FIIES ... 207
1@] B 0T To [T G V] -V OSSPSR 209
GENEIALING DALA.eviiiiiitieii bbb 210
Handling Blanks iN RECOMS.........ccviiiiieiieie et ee et sne e 212
SQL*Loader EXAMPIESocuiiiiiiiieeiee e 213
INVOKING SQLFLOAUEcviiieiiiecieee ettt et este e e enaenne s 218
1@] B 0T To [=] gl o 01RO UPTTR PRSI 219
EXIEINAL TADIESiieieeeeee e 222
SBIT CNECK ...ttt ettt b e r et e e reene s 223
© SunGard 2004-2007 Introduction to Oracle

Page 206

Section L: SQL*Loader & External Tables

Lesson: Required Input Files

«f Jumpto T0C

Input files

In order to load data from a flat file into a table, there must be two files: a data file and a control
file (or they can be combined into one file, as we will see later). The data file contains the data
you want to load, and the control file specifies the format and the destination of the data.

The data file
There are two main data file types: fixed format files and variable format files.

Fixed format files contain records with fixed length, and the data fields in those records have
fixed length, type, and position.
e Positioning of data is crucial because the position in the file is the only way to distinguish
between the data items

Variable format files have records that are only as long as necessary to contain the data.
e The fields’ positions and lengths are based on delimiters
o Terminated fields - followed by a specified character (usually a comma)
0 Enclosed fields - both preceded and followed by specified characters (usually
quotation marks). Used for strings that might contain spaces

The control file

The control file contains several kinds of information, which are necessary for loading the data
(in bold in Control file format). The remaining clauses are all optional; they can be used to
describe and manipulate the file data.

The control file uses the Data Definition Language (DDL), which describes:
Data location

Data format

Column definition

Data type mapping

Field specifications

© SunGard 2004-2007 Introduction to Oracle
Page 207

Section L: SQL*Loader & External Tables

Lesson: Required Input Files (Continued)

< Jumpto T0C

Considerations
Things to keep in mind:
e The name of the data field corresponds to the name of the table column into which the
data is loaded
e The data type of the field tells SQL*Loader how to read the data in the datafile. It is not
necessarily the same as the column data type
o Data is converted from the data type specified in the control file to the data type of the
column in the database
e If any of your column names are an Oracle reserved word, then you must enclose them in
quotation marks. The only SQL*Loader additional keyword is CONSTANT.

© SunGard 2004-2007 Introduction to Oracle
Page 208

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Syntax

- Jump ta 100

Command Line Listing
Usage: SQLLDR keyword=value [,keyword=value,...]

Valid Keywords:

userid -- ORACLE username/password

control -- Control file name

log —-- Log file name

bad -- Bad Ffile name

data -- Data file name

discard -- Discard file name

discardmax -- Number of discards to allow (Default all)

skip -- Number of logical records to skip (Default 0)

load -- Number of logical records to load (Default all)

errors -- Number of errors to allow (Default 50)

rows -- Number of rows in conventional path bind array or between
direct path data saves (Default: Conventional path 64, Direct path all)
bindsize -- Size of conventional path bind array in bytes (Default
256000)

silent -- Suppress messages during run

(header, feedback,errors,discards,partitions)
direct -- use direct path (Default FALSE)

parfile -- parameter file: name of file that contains parameter
specifications

parallel -- do parallel load (Default FALSE)

file —- File to allocate extents from

skip_unusable_indexes -- disallow/allow unusable indexes or index
partitions (Default FALSE)

skip_index_maintenance -- do not maintain indexes, mark affected

indexes as unusable (Default FALSE)

readsize -- Size of Read buffer (Default 1048576)

external _table -- use external table for load; NOT_USED, GENERATE_ONLY,
EXECUTE (Default NOT_USED)

columnarrayrows -- Number of rows for direct path column array (Default
5000)

streamsize -- Size of direct path stream buffer in bytes (Default
256000)

multithreading -- use multithreading in direct path

resumable -- enable or disable resumable for current session (Default
FALSE)

resumable_name -- text string to help identify resumable statement
resumable_timeout -- wait time (in seconds) for RESUMABLE (Default
7200)

date_cache -- size (in entries) of date conversion cache (Default 1000)

NOTE: Command-line parameters may be specified either by position or by
keywords.

© SunGard 2004-2007 Introduction to Oracle
Page 209

Section L: SQL*Loader & External Tables

Lesson: Generating Data

«d Jump to T0C

Functions

The following functions provide the means for SQL*Loader to generate the data stored in the
database row rather than reading it from a data file. You can use these functions in your control
file after you specify the database column that you want to populate.

CONSTANT

RECNUM

SYSDATE

SEQUENCE

CONSTANT
To specify a constant for a column, use the keyword CONSTANT followed by a value:

column_name CONSTANT value

RECNUM

Sets the column to the number of the logical record from which that row was loaded. Records
are counted sequentially from the beginning of the first datafile starting with record one. It
increments for records that are discarded, skipped, rejected, or loaded.

column_name RECNUM

SYSDATE
Sets the column to the current system date.

column_name SYSDATE

© SunGard 2004-2007 Introduction to Oracle
Page 210

Section L: SQL*Loader & External Tables

Lesson: Generating Data (Continued)

< Jumpto T0C

SEQUENCE

The SEQUENCE keyword ensures a unique value for a particular column (can be used for
PIDMS). It does not increment for records that are discarded or skipped.

The combination of column name and the SEQUENCE function is a complete column
specification.

column_name SEQUENCE (n | MAX | COUNT ,[increment])
where:

e n
The sequence starts with the integer value n.
e COUNT
The sequence starts with the number of rows already in the table, plus the increment.
¢ MAX
The sequence starts with the current maximum value for the column, plus the increment.
e increment
The sequence is incremented by this amount for each successive row. The default
increment is 1.

© SunGard 2004-2007 Introduction to Oracle
Page 211

Section L: SQL*Loader & External Tables

Lesson: Handling Blanks in Records

«f Jump to T0OC

Null values

If you want all inserted values for a given column to be null, omit the column’s specifications
entirely. To set a column’s values conditionally to null based on a test of some condition in the
logical record, use the NULLIF clause. To set a numeric column to zero instead of NULL, use
the DEFAULTIF clause.

NULLIF

Totally blank fields for numeric or DATE fields cause the record to be rejected. To load one of
these fields as null, use the NULLIF clause with the BLANKS keyword. If an all-blank CHAR
field is surrounded by enclosure delimiters, then the blanks within the enclosures are loaded.
Otherwise, the field is loaded as null.

DEFAULTIF

Using DEFAULTIF on numeric data sets the column to zero when the specified field condition
is true. Using the DEFAULTIF on character data (CHAR, DATE, or numeric EXTERNAL)
data sets the column to null.

© SunGard 2004-2007 Introduction to Oracle
Page 212

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Examples

«f Jump to 100

Basic Person Information
The following Basic Person Information is to be loaded into SWBPERS:

SQL> desc swbpers

Name Null? Type
SWBPERS _PI1DM NOT NULL NUMBER(8)
SWBPERS_SSN VARCHAR2(9)
SWBPERS BIRTH_DATE DATE
SWBPERS_MRTL_CODE VARCHAR2(1)
SWBPERS_SEX VARCHAR2(1)
SWBPERS_CONFID_IND VARCHAR2(1)
SWBPERS_ACTIVITY_DATE NOT NULL DATE
SWBPERS_USER_ 1D VARCHAR2(30)
SWBPERS_DATA_ ORIGIN VARCHAR2 (30)
© SunGard 2004-2007 Introduction to Oracle

Page 213

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Examples (Continued)

«f Jump to T0OC

Fixed format
A fixed format data file will look something like this:

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

6415628629112-0CT-1965SF
6527965326310-AUG-1972MM
6616925689405-JAN-1975SMY

(SWBPERS . DAT)

Control file
Your associated control file will look something like this:

(SWBPERS.CTL)
LOAD DATA
INFILE *SWBPERS1.DAT"
BADFILE *SWBPERS1.BAD"
DISCARDFILE "SWBPERS1.DSC"

APPEND

INTO TABLE SWBPERS

(swbpers_pidm POSITION(O1:08) INTEGER EXTERNAL,
swbpers_ssn POSITION(09:17) CHAR,
swbpers_birth_date POSITION(18:28) DATE "DD-MON-YYYY"

NULLIF birth_date = BLANKS,

swbpers_mrtl_code POSITION(29:29) CHAR,

swbpers_sex POSITION(30:30) CHAR,
swbpers_conftid_ind POSITION(31:31) CHAR(1),
swbpers_activity_date SYSDATE,
swbpers_user_id CONSTANT "LOAD™,
swbpers_data_origin CONSTANT *"SQLLOAD'™)

© SunGard 2004-2007 Introduction to Oracle

Page 214

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Examples (Continued)

«f Jump to T0OC

Analysis

We have chosen the option of appending to the table. This is the safest option because
the existing records within the table will not be affected by our actions.

The length of the fields is explicitly specified and remains standard throughout the entire
data file. Following the POSITION specification is the field’s data type from the data
file.

The birth_date from the data file is in the format of a four-digit year rather than two-digit.
Therefore, a mask is specified so that SQL*Loader can convert this.

Because the birth_date is not required, using the NULLIF function will insert a null into
the column. The DEFAULTIF function would have worked as well.

Our character fields will automatically default to NULL if it is equal to spaces in the data
file; so we have not used the NULLIF or DEFAULTIF function. We would only use the
NULLIF or DEFAULTIF function for character fields when our data was enclosed with
delimiters.

© SunGard 2004-2007 Introduction to Oracle

Page 215

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Examples (Continued)

«f Jump ta T0C

Text delimited
Your data file will look something like this:

64,156286291,12-0CT-1965,S,F,
65,279653263,10-AUG-1972,M,M,
66,169256894,05-JAN-1975,S,M,Y

(SWBPERS2.DAT)

Control file
Your associated control file will look something like this:

(SWBPERS2.CTL)

LOAD DATA

INFILE "SWBPERS2.DAT"

BADFILE "SWBPERS2.BAD"

DISCARDFILE "SWBPERS2.DSC*"

INTO TABLE SWBPERS

FIELDS TERMINATED BY *," OPTIONALLY ENCLOSED BY """

(swbpers_pidm integer external,
swbpers_activity_date SYSDATE,
swbpers_user_id CONSTANT "LOAD",
swbpers_data origin CONSTANT "SQLLOAD",
swbpers_ssn CHAR(9),
swbpers_birth_date DATE(11) "DD-MON-YYYY™

NULLIF birth_date = BLANKS,
swbpers_mrtl_code CHAR(D),
swbpers_sex CHAR(D),
swbpers_confid_ind CHAR(D))
Analysis

e Neither APPEND, INSERT, TRUNCATE, or REPLACE has been chosen as how the
records should be inserted. Therefore, the default of INSERT will be used. This means
that the table must be empty before SQL*Loader is run or it will abort.

e Because the data file is terminating the fields by a comma, each field’s length from each
record will be evaluated separately. Positions are relative and not fixed.

© SunGard 2004-2007 Introduction to Oracle
Page 216

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Examples (Continued)

«f Jump to T0OC

Combined files

You can combine the control file and data file into one. The asterisk indicates to SQL*Loader
that the data is contained within the file, and the BEGINDATA keyword indicates that the data
will begin on the following line.

LOAD DATA

INFILE *

BADFILE "SWBPERS.BAD"

DISCARDFILE "SWBPERS.DSC*

APPEND

INTO TABLE SWBPERS

FIELDS TERMINATED BY *," OPTIONALLY ENCLOSED BY ="'~

(swbpers_pidm integer external,
swbpers_activity_date SYSDATE,
swbpers_user_id CONSTANT "LOAD",
swbpers_data origin CONSTANT "SQLLOAD",
swbpers_ssn CHAR(9),
swbpers_birth_date DATE(11) "DD-MON-YYYY"™

NULLIF swbpers_birth_date = BLANKS,
swbpers_mrtl_code CHAR(1),
swbpers_sex CHAR(1),
swbpers_conftid_ind CHAR(1))

BEGINDATA

64,156286291,12-0CT-1965,S,F,
65,279653263,10-AUG-1972,M,M,
,M,

66,169256894 ,05-JAN-1975,S,M,Y

(SWBPERS.CTL)

© SunGard 2004-2007 Introduction to Oracle
Page 217

Section L: SQL*Loader & External Tables

Lesson: Invoking SQL*Loader

- Jump to 100

Running SQL*Loader
Once you have your files ready, it is time to run. At the prompt (for UNIX), type the following:

sgl ldr username control={control file}

You will be prompted for your password.
For our previous example, we would invoke SQL*Loader by typing the following:

$sqlldr username control=SWBPERS1.CTL

© SunGard 2004-2007 Introduction to Oracle
Page 218

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Process

«f Jump ta T0C

Output files

The following file types will be created if specified in either the control file or the command line.
These files are created by SQL*Loader to indicate the success or failure of the load.

e Log Files (.LOG)

e Bad Files (BAD)

e Discard Files (.DSC)

The log file

The log file will provide the statistics of the load. The first section shows the parameters and
data layout that it pulled from the control file. The second section lists the rejected record
numbers and rejection reasons. The end of the file will list the total number of records read,
records that passed, and records that failed.

Log file example
Here is an example of a log file from the fixed format SWBPERS example, as shown previously:

SQL*Loader: Release 9.2.0.4.0 - Production on Wed Feb 26 15:04:45
2005

Copyright (c¢) Oracle Corporation 1982, 2004. All rights reserved.

Control File: ./ ./SWBPERS1.CTL
Data File: ./ ./SWBPERS1.DAT
Bad File: ./ ./SWBPERS1.BAD

Discard File: SWBPERS1.DSC
(Allow all discards)
Number to load: ALL
Number to skip: O

Errors allowed: 50

Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional

Table SWBPERS, loaded from every logical record.
Insert option in effect for this table: APPEND

© SunGard 2004-2007 Introduction to Oracle
Page 219

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Process (Continued)

- Jump ta 100

Log file example (cont.)

Column Name Position Len Term Encl Data type
SWBPERS_PIDM 1:8 9 , O0('") CHARACTER
SWBPERS_SSN 9:17 9 , O('") CHARACTER
SWBPERS_BIRTH_DATE 18:28 11 , O('") DATE DD-MON-YYYY
SWBPERS_MRTL_CODE 29:29 1 , O('"") CHARACTER
SWBPERS_SEX 30:30 1 , O0('"") CHARACTER
SWBPERS_CONFID_IND 31:31 1 . O0('"") CHARACTER
SWBPERS_ACTIVITY_DATE SYSDATE

SWBPERS_USER_ 1D CONSTANT

Value is "LOAD"
SWBPERS_DATA _ORIGIN CONSTANT

value is "SQLLOAD"

Column BIRTH_DATE is NULL if BIRTH _DATE = BLANKS
Record 4: Rejected - Error on table SWBPERS.
ORA-01400: mandatory (NOT NULL) column is missing or NULL during
insert
Record 5: Rejected - Error on table SWBPERS, column BIRTH_DATE.
ORA-01841: (full) year must be between -4713 and +9999
Table SWBPERS:
3 Rows successfully loaded.
2 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were
failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 3328 bytes(64 rows)
Space allocated for memory
besides bind array: 58658 bytes

Total logical records skipped:
Total logical records read:
Total logical records rejected:
Total logical records discarded:

OoON 01O

Run began on Wed Feb 26 15:04:45 2005
Run ended on Wed Feb 26 15:04:53 2005
Elapsed time was: 00:00:07-.86
CPU time was: 00:00:00.30

© SunGard 2004-2007 Introduction to Oracle
Page 220

Section L: SQL*Loader & External Tables

Lesson: SQL*Loader Process (Continued)

- Jump ta 100

Analyzing the log file

¢ Although we did not specify the errors allowed or the bind array in the control file, these
values defaulted. You can always check the log to figure out the default values
SQL*Loader is using

e Because the log file is from a fixed format data file, the positions are listed along with the
length. For variable length format, position would have FIRST and then NEXT, and the
Length would contain an asterisk (*) because the length will be determined on a record
by record basis

e Although five logical records were read by SQL*Loader, only three were successfully
inserted into the SWBPERS table. In order to fix these errors, edit the.BAD file and then
run the control file against it
Record 4 was rejected because a mandatory column was missing

e Record 5 was rejected because the date format was incorrect

The bad file

The bad file contains records rejected because of incorrect data. Data can be considered “bad”
for a number of reasons. Data is rejected by SQL*Loader when the input format is invalid, such
as when the second enclosure delimiter is missing or when a delimited field exceeds its
maximum length.

Once SQL*Loader accepts a record for processing, the row is sent to Oracle for insertion. At
this point, the row can also be considered “bad”. Examples might be because a key is not
unique, because a required field is null, or because the field contains invalid data for the Oracle
data type.

The discard file

The discard file contains records that were filtered out of the load because they did not match
any of the record-selection criteria (WHEN clause) specified in the control file. This file is
created only when it is needed, and only if you have specified that a discard file should be
enabled.

The discard file is written in the same format as the data file. The discard data can be loaded
with the existing control file after any necessary editing or correcting.

© SunGard 2004-2007 Introduction to Oracle
Page 221

Section L: SQL*Loader & External Tables

Lesson: External Tables

«f Jump to T0OC

Description
External tables are tables that look and act like Oracle tables, but the data is stored outside the
database in a flat file.

External tables have some differences from standard Oracle tables:
e Read Only
e Cannot have Indexes or Constraints
e No DML allowed

External tables can be used for data that comes from a non-Oracle source and changes
frequently. You can replace the external file with new data, as long as it has the same structure
and file name, without making any changes to the database.

Because external tables cannot be indexed, they are not recommended for large amounts of data
unless you plan on reading the entire file of data each time you reference that external table.

Sample Syntax:
CREATE TABLE emp_ load
(first name CHAR(15), last name CHAR(20), year of birth CHAR(4))
ORGANIZATION EXTERNAL
(TYPE ORACLE LOADER DEFAULT DIRECTORY ext tab dir
ACCESS PARAMETERS (RECORDS DELIMITED BY '|' FIELDS TERMINATED BY ',
(first _name CHAR(7),
last_name CHAR(8),
year of birth CHAR(4)))
LOCATION ('EMPLOYEE.dat'));

Additional Information
Additional information on SQL*Loader functionality and External Tables can be found in the

Oracle Utilities Reference Manual.

© SunGard 2004-2007 Introduction to Oracle
Page 222

Section L: SQL*Loader & External Tables

Lesson: Self Check

< Jumpto T0C

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
Examine the SWRIDEN.DAT file that has been provided. What type of data file is it?

Exercise 2

Create a control file that will load the data into the table. For the PIDM, use the maximum
PIDM number in the swriden table and increment by one. Use the current system date for the
activity date.

Exercise 3

Run the SQL*Loader command line utility, either on your database server, or on your PC using
the instruction in the supplied SQL-Loader exercise.doc.

© SunGard 2004-2007 Introduction to Oracle
Page 223

Section L: SQL*Loader & External Tables

Lesson: Self Check (Continued)

< Jumpto T0C

Exercise 4
Examine your log file. What was the success rate? Which records, if any, did not load correctly?

Exercise 5
What steps would you take to fix the records that had errors and reload the data?

© SunGard 2004-2007 Introduction to Oracle
Page 224

Section M: SQL*Plus Reporting

Lesson: Overview

«f Jump to T0OC

Introduction

So far, you have learned how to query the database to return information. However, the data has
not been formatted for reporting purposes. SQL*Plus gives you the capability to format the
appearance of the data returned from a SQL Statement.

Objectives
At the end of this section, participants will be able to
e change column headings
format NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and columns
copy, list, and reset column display attributes
suppress duplicate values and insert spaces for clarity
calculate and print summary lines (totals, averages, minimums, maximums, and more)
list and remove spacing and summary line definitions
set page dimensions
place titles at the top and bottom of each page
display column values and the current date or page number in titles
list and suppress page title definitions
send query results to a file or printer.

© SunGard 2004-2007 Introduction to Oracle
Page 225

Section M: SQL*Plus Reporting

Lesson: Overview (Continued)

«f Jump to 100

Section contents

OVEIVIBW ...ttt sttt b et h e bt e st b e ke et e e Rt e e bt e st e e bt e ke e st e emeenbeenbesreenbeenneas 225
s T 1] o] [T =T YRS 227
Suppressing Duplicate Values in Break Columns............cccooiiiiiiiiiiiiccccce e 228
Inserting Space When a Break Column's Value Changes..........cccceevveveiieieevesieceese e 229
Using Multiple Spacing TECANIQUEScvoiiiiiiiiiiiiee e 230
Listing and Removing Break DefinitioNns.........ccocvieiieieiiesiese e 232
Computing Summary Lines When a Break Column's Value Changes............cccoovevvinennn. 233
Computing Summary Lines at the End of the Reportcccce e iieveeie e 235
Defining Page Titles and DIMENSIONScoviiiiiieieieiesie e 236
Displaying Column Values IN TILIESociveiiiiie e 238
Storing and Printing QUErY RESUIES...........cooiiiiiiieiicee e 239
Saving the Commands t0 @ File.........ccoiieiieiiie i 240
HTIML REPOITS ...t 241
SBIF CNECK . 244
© SunGard 2004-2007 Introduction to Oracle

Page 226

Section M: SQL*Plus Reporting

Lesson: Example Query

< Jump to [0C

Example query

Our examples will be based upon the following query. Enter it into SQL*Plus, and execute it to
see your results.

SQL> SELECT twraccd_term_code, swriden_last_name|]", "]I|
swriden_first_name name, twraccd_bill_date,
twraccd_detc code, twraccd amount

FROM swriden, twraccd
WHERE swriden_pidm = twraccd_pidm
AND swriden_change_ind is null
ORDER BY twraccd_term_code,swriden_last name,
Swriden_first _name,twraccd _bill_date,
Twraccd_detc_code;

© SunGard 2004-2007 Introduction to Oracle
Page 227

Section M: SQL*Plus Reporting

Lesson:

Suppress duplicate values

The BREAK command suppresses duplicate values by default in the column or expression you
name. Thus, to suppress the duplicate values in a column specified in an ORDER BY clause, use

the BREAK command in its simplest form:

BREAK ON column_name

Suppressing Duplicate Values in
Break Columns

«f Jump to T0OL

Note: Whenever you specify a column or expression in a BREAK command, use an ORDER
BY clause specifying the same column or expression. If you do not do this, the breaks may
appear to occur randomly.

Example

To suppress the display of duplicate term codes in the previous query results, enter the following

commands:

SQL> BREAK ON TWRACCD_TERM_CODE

SQL*Plus displays the following output:

Billing
Date

Category

Amount

200402

200501

200502

Erickson, Ralph
Erickson, Ralph
Brown, Julie
Brown, Julie
Brown, Julie
Erickson, Ralph
Erickson, Ralph
Erickson, Ralph
Erickson, Susan
Jones-Erickson,
Jones-Erickson,
Smith, Robert
Smith, Robert
White, Nancy
White, Nancy
White, Nancy
Erickson, Ralph
Erickson, Ralph

Sandy
Sandy

21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
28-MAY-05
21-MAY-05
21-MAY-05
25-MAY-05
21-MAY-05
18-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05
21-MAY-05

© SunGard 2004-2007

Page 228

Introduction to Oracle

Section M: SQL*Plus Reporting

Lesson:

Inserting Space When a Break
Column's Value Changes

«f Jumpto T0C

Insert blank lines
You can insert blank lines or begin a new page each time the value changes in the break column.

To insert n blank lines, use the BREAK command in the following form:
BREAK ON break column SKIP n

Example

To place one blank line between term codes, enter the following command:
SQL> BREAK ON TWRACCD_TERM_CODE SKIP 1

Now rerun the query:

SQL> /
SQL*Plus displays the results:
Billing

Term Name Date Category Amount

200402 Erickson, Ralph 21-MAY-05 LABS $120.00
Erickson, Ralph 21-MAY-05 DORM $1,000.00

200501 Brown, Julie 21-MAY-05 BOOK $300.20
Brown, Julie 21-MAY-05 TUIT $1,500.50
Brown, Julie 28-MAY-05 BKSC $700.00
Erickson, Ralph 21-MAY-05 MEAL $900.00
Erickson, Ralph 21-MAY-05 CRED $400.00
Erickson, Ralph 25-MAY-05 CASH $800.00
Erickson, Susan 21-MAY-05 TUIT $300.00
Jones-Erickson, Sandy 18-MAY-05 FAID $1,100.00
Jones-Erickson, Sandy 21-MAY-05 TUIT $800.00
Smith, Robert 21-MAY-05 DORM $500.00
Smith, Robert 21-MAY-05 TUIT $1,100.00
White, Nancy 21-MAY-05 CHEK $950.00
White, Nancy 21-MAY-05 LABS $50.00
White, Nancy 21-MAY-05 TUIT $900.00

200502 Erickson, Ralph 21-MAY-05 BOOK $400.00

© SunGard 2004-2007

Page 229

Introduction to Oracle

Section M: SQL*Plus Reporting

Lesson: Using Multiple Spacing Techniques

< Jumpto T0C

Specify multiple columns

Suppose you have more than one column in your ORDER BY clause and wish to insert space
when each column's value changes. Each BREAK command you enter replaces the previous
one. Thus, if you want to use different spacing techniques in one report or insert space after the
value changes in more than one ordered column, you must specify multiple columns and actions
in a single BREAK command. A long BREAK statement may be continued on multiple lines by
adding the continuation character “-* (dash) to the end of each line to be continued.

© SunGard 2004-2007 Introduction to Oracle
Page 230

Section M: SQL*Plus Reporting

Lesson:

Using Multiple Spacing Techniques
(Continued)

«f Jump to T0OC

Example

To skip a page when the value of TERM_CODE changes, one line when the value of NAME

changes, and two lines at the end of the report, enter the following command:
BREAK ON TWRACCD_TERM_CODE SKIP PAGE ON NAME SKIP 1

SQL>
ON REPORT SKIP 2

Run the query to see the results:

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS $120.00
21-MAY-05 DORM $1,000.00

Billing
Term Name Date Category Amount
200501 Brown, Julie 21-MAY-05 BOOK $300.20
21-MAY-05 TUIT $1,500.50
28-MAY-05 BKSC $700.00
Erickson, Ralph 21-MAY-05 MEAL $900.00
21-MAY-05 CRED $400.00
25-MAY-05 CASH $800.00
Erickson, Susan 21-MAY-05 TUIT $300.00
Jones-Erickson, Sandy 18-MAY-05 FAID $1,100.00
21-MAY-05 TUIT $800.00
Smith, Robert 21-MAY-05 DORM $500.00
21-MAY-05 TUIT $1,100.00
White, Nancy 21-MAY-05 CHEK $950.00
21-MAY-05 LABS $50.00
21-MAY-05 TUIT $900.00

Billing
Term Name Date Category Amount
200502 Erickson, Ralph 21-MAY-05 BOOK $400.00
21-MAY-05 TUIT $750.00

© SunGard 2004-2007

Page 231

Introduction to Oracle

Section M: SQL*Plus Reporting

Lesson: Listing and Removing Break
Definitions

< Jumpto T0C

List current break definition

You can list your current break definition by entering the BREAK command with no clauses:
BREAK

Remove current break definition

You can remove the current break definition by entering the CLEAR command with the

BREAKS clause:
CLEAR BREAKS

Note: You may wish to place the command CLEAR BREAKS at the beginning of every
command file to ensure that previously entered BREAK commands will not affect queries you
run in a given file.

© SunGard 2004-2007 Introduction to Oracle
Page 232

Section M: SQL*Plus Reporting

Lesson: Computing Summary Lines When a
Break Column's Value Changes

«f Jump ta 100

COMPUTE command

If you organize the rows of a report into subsets with the BREAK command, you can perform
various computations on the rows in each subset. You do this with the functions of the
SQL*Plus COMPUTE command. Like BREAK, COMPUTE replaces any previously issued
COMPUTE statements. A long COMPUTE statement may be continued on multiple lines by
adding the continuation character “-* (dash) to the end of each line to be continued.

Use the BREAK and COMPUTE commands together in the following forms:

BREAK ON break _column
COMPUTE function LABEL label OF column column column ...
ON break _column

Functions and effects
The following table lists compute functions and their effects:

Function Effect
SUM Computes the sum of the values in the column
MIN Computes the minimum value in the column
MAX Computes the maximum value in the column
AVG Computes the average of the values in the column
STD Computes the standard deviation of the values in the column
VAR Computes the variance of the values in the column
COUNT Computes the number of non-null values in the column
NUM Computes the number of rows in the column
© SunGard 2004-2007 Introduction to Oracle

Page 233

Section M: SQL*Plus Reporting

Lesson: Computing Summary Lines When a

Break Column's Value Changes

Continued
«f Jump to T0OC

Example

To compute the total of AMOUNT by name, first list the current BREAK definition:

SQL> BREAK

break on report skip 2 nodup
on TERM_CODE page nodup
on NAME skip 1 nodup

Note: When values in successive rows are duplicates, using nodup prevents the duplicates from

being printed.

Now enter the following COMPUTE command and run the current query:

SQL> COMPUTE SUM OF AMOUNT ON NAME
SQL> /

SQL*Plus displays the following output:

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS $120.00
21-MAY-05 DORM $1,000.00
B o o o o o o o o o o 4 o .
sum $1,120.00
Billing
Term Name Date Category Amount
200501 Brown, Julie 21-MAY-05 BOOK $300.20
21-MAY-05 TUIT $1,500.50
28-MAY-05 BKSC $700.00
B o o o o o o o o o o o o o R e o e o DO
sum $2,500.70

© SunGard 2004-2007
Page 234

Introduction to Oracle

Section M: SQL*Plus Reporting

Lesson: Computing Summary Lines at the
End of the Report

«f Jump to 100

Compute summary lines

You will want to add a total billed amount for each term, and a grand total at the end of the

report. First, find out what your existing COMPUTEs are by typing the following:
SQL> COMPUTE

Because we are summing for the same column, only at different breakpoints, we will revise the

existing compute. Do this by typing the following:
SQL> COMPUTE SUM OF twraccd_amount ON name twraccd_term_code —
REPORT

You should see the total appearing after each name and term and a grand total at the end of the
report.

Clearing Computes

To remove all compute statements issue the command:
SQL> CLEAR COMPUTES

© SunGard 2004-2007 Introduction to Oracle
Page 235

Section M: SQL*Plus Reporting

Lesson: Defining Page Titles and Dimensions

] JumptaTOD

TTITLE and BTITLE

You can set a title to display at the top of each page of a report as well as a title to display at the
bottom of each page. The TTITLE command defines the top title; the BTITLE command defines
the bottom title.

TTITLE position_clause(s) char_value -
position_clause(s) char_value ...
or
BTITLE position_clause(s) char_value -
position_clause(s) char_value ...

A long TTITLE or BTITLE statement may be continued on multiple lines by adding the
continuation character “-“ (dash) to the end of each line to be continued, as in the above example.

Clauses
The most often used clauses of TTITLE and BTITLE are summarized in the following table:
Clause Example Description

COLn COL 72 Makes the next CHAR value appear in the specified
column of the line.

SKIP n SKIP 2 Skips to a new line n times. If n is greater than 1, n-1
blank lines appear before the next CHAR value.

LEFT LEFT Left-aligns the following CHAR value.

CENTER CENTER Centers the following CHAR value.

RIGHT RIGHT Right-aligns the following CHAR value.

Turning Titles On/Off
There is no “clear TTITLE” command, so to remove the titles from showing up in your output,
turn the TTITLE and BTITLE off. Titles can be turned on and off using:

TTITLE OFF /ON
BTITLE OFF/ON

© SunGard 2004-2007 Introduction to Oracle
Page 236

Section M: SQL*Plus Reporting

Lesson: Defining Page Titles and Dimensions
(Continued)

< Jumpto T0C

Example

To put titles at the top and bottom of each page of a report, enter:
SQL> TTITLE CENTER "ABC University"”™ SKIP 1 CENTER -
"Billing Report® SKIP 2
SQL> BTITLE CENTER “CONFIDENTIAL"

Now run the current query:
SQL> /

SQL*Plus displays the following output:

ABC University
Billing Report

Billing
Term Name Date Category Amount
200402 Erickson, Ralph 21-MAY-05 LABS $120.00
1-MAY-05 DORM $1,000.00
B o o o b o b o o o o o
sum $1,120.00
*hxxAkAA
sum $1,120.00
CONFIDENTIAL
© SunGard 2004-2007 Introduction to Oracle

Page 237

Section M: SQL*Plus Reporting

Lesson: Displaying Column Values in Titles

«f Jump ta [UC

Changing master column value

You may wish to create a master/detail report that displays a changing master column value at
the top of each page with the detail query results for that value below. You can reference a
column value in a top title by storing the desired value in a variable and referencing the variable
ina TTITLE command. Use the following form of the COLUMN command to define the
variable:

COLUMN collumn_name NEW_VALUE variable_name

Example
SQL> COLUMN TWRACCD_TERM _CODE NEW_VALUE TRMVAL NOPRINT

Because you will display the term code in the title, you do not want them to print as part of the
detail. The NOPRINT clause you entered above tells SQL*Plus not to print the column
TWRACCD_TERM_CODE.

Next, include a label and the value in your page title, enter the proper BREAK command, and
suppress the bottom title from the last example:

SQL> TTITLE CENTER "ABC University" -
RIGHT "Page: * -
FORMAT 999 SQL.PNO -
SKIP 1 CENTER "Billing Report® -
SKIP 2 - CENTER "Term Code: " TRMVAL -
SKIP 3

SQL*Plus displays the following output:
ABC University Page: 1

Billing Report

Term Code: 200402

Billing
Name Date Category Amount
Erickson, Ralph 21-MAY-05 LABS $120.00
© SunGard 2004-2007 Introduction to Oracle

Page 238

Section M: SQL*Plus Reporting

Lesson: Storing and Printing Query Results

< Jumpto T0C

Storing and printing
In most cases, you will want to store the results of the query into a file, or directly send the
output to the printer.

Spool to file

To spool to afile:
SPOOL <filename>
<report body>

SPOOL OFF
Spool to printer
To spool to the printer:

SPOOL OUT
<report body>
SPOOL OFF
Append to a Spool file (Oracle 10g ONLY)

SPOOL <filename> APPEND
<report body>

SPOOL OFF

© SunGard 2004-2007 Introduction to Oracle
Page 239

Section M: SQL*Plus Reporting

Lesson: Saving the Commands to a File

- Jump ta 100

Storing commands

You should now have an almost finished report. However, it is unrealistic that a user would
want to type the commands in, line by line, until the desired results are achieved. Instead, you
can store all the commands into one file, and then run the file.

Example file
An example file follows that you would have for the report that you created.

SET FEEDBACK OFF

SET ECHO OFF

CLEAR COLUMNS

CLEAR COMPUTES

CLEAR BREAKS

COLUMN NAME HEADING “Name*®

COLUMN TWRACCD_DETC_CODE HEADING "Category*

COLUMN TWRACCD_BILL_DATE HEADING "Billing|Date*

COLUMN TWRACCD_AMOUNT HEADING "Amount®™ FORMAT $99,999.00

SET LINESIZE 70

SET PAGESIZE 60

COLUMN TWRACCD_TERM_CODE NEW_VALUE TRMVAL NOPRINT

TTITLE CENTER "ABC University®" RIGHT "Page: " -

FORMAT 999 SQL.PNO SKIP 1 CENTER "Billing Report®™ SKIP 2 -

CENTER "Term Code: " TRMVAL SKIP 3

BTITLE CENTER “"CONFIDENTIAL"

BREAK ON TWRACCD_TERM_CODE SKIP PAGE ON NAME SKIP 1

COMPUTE SUM LABEL Total OF TWRACCD_AMOUNT ON name twraccd_term_code -

REPORT

SPOOL BILLING.RPT

SELECT TWRACCD_TERM_CODE, SWRIDEN_LAST_NAME
117, 11 SWRIDEN_FIRST_NAME NAME,
TWRACCD_BILL_DATE, TWRACCD_DETC_CODE,
TWRACCD_AMOUNT
FROM SWRIDEN, TWRACCD
WHERE SWRIDEN_PIDM = TWRACCD_PIDM
AND SWRIDEN_CHANGE_IND IS NULL
ORDER BY TWRACCD_TERM_CODE, SWRIDEN_LAST_NAME,

SWRIDEN_FIRST_NAME, TWRACCD_BILL_DATE,
TWRACCD_DETC_CODE;

SPOOL OFF

SET FEEDBACK ON

SET ECHO ON

© SunGard 2004-2007 Introduction to Oracle
Page 240

Section M: SQL*Plus Reporting

Lesson: HTML Reports

HTML Reports

Reports can be created that are either HTML pages themselves or produce output that can be
incorporated into an existing HTML page.

To generate HTML output, you need to issue the “SET MARKUP HTML ON SPOOL ON”
command. However, this immediately starts outputting HTML codes, so you may not want to
turn this option on until you have your SQL defined and tested.

You may include HTML tags as part of your SQL for additional formatting.

To create an HTML report, use the following steps:

Create and test SQL

SET MARKUP HTML ON SPOOL ON
SPOOL <report_name.htm>

Execute query

SPOOL off

Open <report_name.htm> in a browser

© SunGard 2004-2007 Introduction to Oracle

Page 241

Section M: SQL*Plus Reporting

Lesson: HTML Reports (Continued)

<d Jump ta 100

The output in SQL*Plus will look like this when you execute the query:

14:33:04 c700 > spool myrept._htm

14:33:11 c700 > /

<p>

<table border="1" width="90%" align="center” summary="Script output”>

<tr>

<th scope="col'>

Term

</th>

<th scope="col">

NAME

</th>

<th scope="'col'>

Billing

Date

</th>

<th scope="col''>

Category

</th>

<th scope=""col'>

Amount

</th>

</tr>

<tr>

<td>

200402

</td>

<td>

Erickson, Ralph

</td>

<td>

10-SEP-04

</td>

<td>

LABS

</td>

<td align="right'>
$120.00

</td>

</tr>

© SunGard 2004-2007 Introduction to Oracle
Page 242

Section M: SQL*Plus Reporting

Lesson: HTML Reports (Continued)

< Jump to 100

HTML Output

Opening the output in a browser results in a report that looks like:

151
File Edit Yiew Favorites Tools Help | #
@Back - e - Ia @ k{h |pSearch *Favorites ®| @v & - D y’ é% 43
Address Dnharacleorad2\bintmyrept.htm j Go | Links **

“AIM® - > | Oy search ¥ Highlioht (&) Pop-Ups Blocked: 388 | /& AIM ~ Ed Games @ Personals - Weather Share This Page >
A AIM°]| = | ®; &
SQL =/ I
Term NAME %ﬂi.i:;g Category Amount
200402 [Erickson, Ralph [10-SEP-04 [LABS | $120.00
| | [07-0CT-04 [DORM | $1,000.00
Term NAME]i)i]:l.i:;g Category Amount
[200501 [Brown, Tulie [12-190V-05 BOOK | $300.20
| | [27-190V-05 [ToTT | $1,500.50
| | [15-DEC-05 BOOK | $700.00 |
| [Erickson, Ralph [24-190V-05 |CEED | $400.50
| | [13-DEC-05 lCasSH | $800.00
| | [17-DEC-05 IMEAL | $900.00
| |Eickson, Susan [02-DEC-05 (TUIT | $300.00
| [Tones-Frickson, Sandy [27-10V-05 (TUIT | $200.00
| | [24-DEC-05 [FATD | $1,100.00
| |Smith, Robert [07-DEC-05 [TUTT | $1,100.00
| | [17-DEC-05 [DORM | $500.00
| [White, Nancy [10-DEC-05 [TUTT | $900.00
| | [21-DEC-05 [cHEE | $950.00 =

@ Done ’_l_l_l_’_| i My Computer v

© SunGard 2004-2007 Introduction to Oracle

Page 243

Section M: SQL*Plus Reporting

Lesson: Self Check

<d Jump ta 100

Description
Use the concepts presented in this section to complete the following exercises.

Exercise 1

Create a SQL*Plus report that shows the Student ID, Name, and the courses for which they are
registered (use TERM 200502). Make a separate page for each Student. Create a title with your
institution name and a subtitle of 'Registered Courses'. Include the term in the title.

Exercise 2
Using the same report as Exercise 1, create it as an HTML report.

© SunGard 2004-2007 Introduction to Oracle
Page 244

Section N: Answer Key for Self Check
Exercises

Lesson: Overview

< Jump ta 100

Overview
This section provides the answers to the self check exercises in this course.

This section should be used as an aid when performing the exercises in this course and also as a
reference for learning SQL concepts.

Section Contents

(@] VT PSR SPORN 245
SECHION B — ANSWET KBYciiiiiiiie ittt et esbe e be e sreesneeneenraente s 246
SECHION C — ANSWET KBY ...ttt sttt 248
SECHION D — ANSWEL KEBY ...ttt sttt s e e te e sreenneeneeareene s 251
SECHION E—= ANSWET KBY ...ttt bbb 257
SECHON F = ANSWEE KBY .. .eiiieii ettt st e et e et et e s beebeeneesreeneaneenraeneens 260
SECLION G — ANSWET KBY ...ttt ettt bbb eneas 262
SECHON H — ANSWEL KBY ...ttt et be e te e steenne e e sreene s 267
SECHION | = ANSWET KBY ...ttt bbbttt 274
SECHON J = ANSWET KBY ...ttt ettt e et esbe et e s e e steereesreesteeneen 277
SECHION K = ANSWET KBY ...ttt bbbttt 282
SECHION L — ANSWEL KEY ...ttt st be e te e steeaesneesta et 284
© SunGard 2004-2007 Introduction to Oracle

Page 245

Section N: Answer Key for Self Check
Exercises

Lesson: Section B — Answer Key

«f Jump to 100

Exercise 1
Using the login and database information provided by the instructor, make sure you can log into
SQL*Plus on your computer.

Locate the Icon on your desktop or under START->Programs - {Oracle Home or something
similar} - Application Development - SQL*Plus

Exercise 2

Issue the following statement to view the tables that you own:
SELECT table_name FROM USER_TABLES;

If no records are retrieved, contact the instructor.

SQL> select table_name from user_tables;

TABLE_NAME
HIGH_MATH
HIGH_VERBAL
SWBPERS
SWRADDR
SWRIDEN
SWRREGS
SWRSTDN
SWRTEST
SWVCRSE
SWVSTDN
SWVTERM
TEMP
TWRACCD
TWVDETC

© SunGard 2004-2007 Introduction to Oracle
Page 246

Section N: Answer Key for Self Check
Exercises

Lesson: Section B — Answer Key (Continued)

«f Jump to T0OC

Exercise 3

Issue the following statement to view the tables that you have permission to view (if the list is
long and scrolls off the screen, consider setting PAUSE on with an appropriate pause message):
SELECT table_name FROM ALL_TABLES;

(Your results may vary based on the privileges granted to your account)

SQL> select table name from all_tables;

TABLE_NAME
DUAL
SYSTEM_PRIVILEGE_MAP
TABLE_PRIVILEGE_MAP
STMT_AUDIT_OPTION_MAP
DEF$_TEMP$LOB
WM$WORKSPACES_TABLE
HELP
0GIS_SPATIAL_REFERENCE_SYSTEMS
USER_CS_SRS
USER_TRANSFORM_MAP
SDO_DIST_UNITS
SDO_AREA_UNITS
SDO_ANGLE_UNITS
AUDIT_ACTIONS
SWRADDR

SWBPERS

TWRACCD

TWVDETC

SWVTERM

SWRREGS

SWVCRSE

SWRSTDN

SWVSTDN

SWRTEST

TEMP

HIGH_VERBAL
HIGH_MATH

SWRIDEN

CS_SRS
SDO_ELLIPSOIDS
SDO_PROJECTIONS
SDO_DATUMS

© SunGard 2004-2007 Introduction to Oracle
Page 247

Section N: Answer Key for Self Check
Exercises

Lesson: Section C — Answer Key

«f Jump ta T0C

Exercises use the SWRREGS table.

Exercise 1
Write a query to return all the columns.

SQL>select * from swrregs;

SWRREGS_PIDM SWRREG SWRREGS_CRN SWRREGS_GPA SWRREGS_A

12340 200501 10001 3.2 20-DEC-05
12349 200501 10001 3.4 20-DEC-05
12349 200302 10007 3.1 20-DEC-05
12346 200402 10001 2.6 20-DEC-05
12348 200402 10001 2.9 20-DEC-05
12343 200402 10001 3 20-DEC-05
12340 200501 10007 2.1 20-DEC-05
12340 200402 10015 2.8 20-DEC-05
12340 200502 10017 20-DEC-05
12340 200502 10004 20-DEC-05
12340 200402 10008 2 20-DEC-05
12340 200402 10005 3 20-DEC-05

... 44 rows selected

Exercise 2

Write a query to return the PIDM (Personal Identification Master), CRN (course number), and
GPA (grade point average) for each record.

SQL> SELECT swrregs_pidm, swrregs_crn, swrregs_gpa
FROM swrregs;

SWRREGS_PIDM SWRREGS_CRN SWRREGS_GPA

12340 10001 3.2
12349 10001 3.4
12349 10007 3.1
12346 10001 2.6
12348 10001 2.9
12343 10001 3
12340 10007 2.1
12340 10015 2.8
--- 44 rows selected
© SunGard 2004-2007 Introduction to Oracle

Page 248

«d Jump ta TOC

Exercise 3

Section N: Answer Key for Self Check

Exercises

Lesson: Section C — Answer Key (Continued)

Write a query to return the unique course numbers.

SQL> SELECT DISTINCT swrregs_crn

FROM

SWRREGS_CRN

10009
. 22

Exercise 4

SWrregs;

rows selected

Write a query to return the row number, row identification, and PIDM for each record.

SQL> SELECT ROWNUM, ROWID, swrregs_ pidm

FROM

RPOOWOO~NOUAWNE

el

SWRREGS;
ROWID

AAANOBAAJAAAAASAAA
AAANObAAJAAAAA9AAB
AAANOBAAJAAAAAQAAC
AAANObAAJAAAAAQAAD
AAANObAAJAAAAAQAAE
AAANObAAJAAAAA9AAF
AAANObAAJAAAAA9SAAG
AAANObAAJAAAAA9AAH
AAANOBAAJAAAAA9AAL
AAANObAAJAAAAA9AAT
AAANObAAJAAAAA9AAK

. 44 rows selected

SWRREGS_PIDM

© SunGard 2004-2007

Page 249

Introduction to Oracle

Section N: Answer Key for Self Check
Exercises

Lesson: Section C — Answer Key (Continued)

< Jump to 100

Exercise 5
Select the system date from the dummy table DUAL.

SQL> SELECT SYSDATE
FROM DUAL;

SYSDATE

<today"s date>

© SunGard 2004-2007 Introduction to Oracle
Page 250

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key

«f Jump to T0OC

Exercise 1
Query the first five rows from the SWRREGS table.

SQL> SELECT * FROM swrregs
2 WHERE ROWNUM <6;

SWRREGS_PIDM SWRREG SWRREGS_CRN SWRREGS_GPA SWRREGS_A

12340 200501 10001 3.2 20-DEC-05
12349 200501 10001 3.4 20-DEC-05
12349 200302 10007 3.1 20-DEC-05
12346 200402 10001 2.6 20-DEC-05
12348 200402 10001 2.9 20-DEC-05

5 rows selected.

Try to query rows 3 and higher from SWRREGS. What occurred?

SQL> SELECT *
FROM swrregs
WHERE ROWNUM > 3;

no rows selected

This will never return any rows because ROWNUM is assigned on order of display. For
example, the first row to be displayed is assigned ROWNUM of 1, but then fails the
condition of ROWNUM > 3 and is consequently discarded. The second row fetched will
therefore be assigned ROWNUM of 1, and will also fail the condition. Subsequently, all
rows will fail to meet the condition.

© SunGard 2004-2007 Introduction to Oracle
Page 251

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key (Continued)

< Jump to T0C

Exercise 2

Using SWRADDR, find the city, state, and zip code for PIDM (internal identification master)
12340. Remember to describe the table first to see the names of the fields.

SQL> SELECT swraddr_city, swraddr_stat code, swraddr_zip
FROM swraddr
WHERE swraddr_pidm = 12340;

SWRADDR_CITY SWR SWRADDR_ZI
WEST CHESTER PA 19380
Exercise 3

From SWRIDEN, query the students who do not have the last name of 'Erickson’. Remember to
only include the most current record for each student. Return all columns.

SQL> SELECT *
FROM swriden
WHERE swriden_change_ind 1S NULL
AND swriden_last name <> "Erickson”;

PIDM SWRIDEN_I SWRIDEN_LAST_NA SWRIDEN_FIRST_N MI S SWRIDEN_A SWRIDEN_USER SWRIDEN_DA
12340 857834585 Brown Julie K 20-DEC-05 TRAIN_ORA101 TRAINING
12341 882993466 Smith Robert E 20-DEC-05 TRAIN_ORA101 TRAINING
12342 853954312 Johnson Peter S 20-DEC-05 TRAIN_ORA101 TRAINING
12343 845672112 Jones-Erickson Sandy J 20-DEC-05 TRAIN_ORA101 TRAINING

. 18 rows selected

Exercise 4

Use the single ampersand in a SQL statement to prompt for a table name, displaying all columns
within a table. Run this query for SWRREGS and SWRIDEN.

SQL> SELECT * FROM &SELECT_TABLE;
Enter value for table: swrregs
old 1: SELECT * FROM &TABLE
new 1: SELECT * FROM swrregs

SQL> /

Enter value for table: swriden
old 1: SELECT * FROM &TABLE
new 1: SELECT * FROM swriden

© SunGard 2004-2007 Introduction to Oracle
Page 252

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key (Continued)

< Jump to 100

Exercise 5

Retrieve the first name, last name, and ID from SWRIDEN where the ID begins with a 0. (Hint:
use the keyword LIKE)

SQL> SELECT swriden_first _name, swriden_last name, swriden_id
FROM swriden
WHERE swriden_id like "0%";

SWRIDEN_FIRST_N SWRIDEN_LAST NA SWRIDEN_I

Frederick Dukes 029348721
Marcus Jordan 029348721

Retrieve the first name, last name, and ID from SWRIDEN where the fourth character in the ID
field is a 6 and the total length of the column is 7.

SQL> SELECT swriden_first_name, swriden_last name, swriden_id
FROM swriden
WHERE swriden_id LIKE * 6 "3

SWRIDEN_FIRST_N SWRIDEN_LAST_NA SWRIDEN_I

Jennifer Jameson 8486565

© SunGard 2004-2007 Introduction to Oracle
Page 253

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key (Continued)

< Jump to 100

Exercise 6

Using the SWRREGS table, list the PIDM, CRN, and GPA for students who have taken golf,
tennis, or swimming. (Hint: look at the validation table SWVCRSE first to find the code values
for the courses.)

SQL> SELECT * FROM swvcrse;

SQL> SELECT swrregs_pidm, swrregs_crn, swrregs_gpa
FROM swrregs
WHERE swrregs_crn IN (10018, 10019, 10020);

SWRREGS_PIDM SWRREGS_CRN SWRREGS_GPA

12341 10018 2.4
12342 10020
12344 10019
© SunGard 2004-2007 Introduction to Oracle

Page 254

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key (Continued)

< Jump to TOC

Note
For exercises 7 - 9, refer to the SAT test table, SWRTEST.

Exercise 7
Retrieve the student records where the student achieved above 550 in both math and verbal.

SQL> SELECT *
FROM swrtest
WHERE swrtest _sat verbal > 550
AND swrtest _sat math > 550;

SWRTEST_PIDM SWRTEST_T SWRTEST_SAT_VERBAL SWRTEST_SAT_MATH SWRTEST_A

12341 08-JUN-05 590 610 20-NOV-05
12345 10-DEC-05 590 620 31-0CT-05
12346 20-NOV-05 630 590 31-0CT-05

Exercise 8
Retrieve the student records where the student achieved above 550 in either math or verbal.

SQL> SELECT *
FROM swrtest
WHERE swrtest_sat_verbal > 550
OR swrtest_sat _math > 550;

SWRTEST_PIDM SWRTEST_T SWRTEST_SAT_VERBAL SWRTEST_SAT_MATH SWRTEST_A

12341 03-MAR-05 530 580 31-0CT-05
12342 13-FEB-05 660 520 31-0CT-05
12341 08-JUN-05 590 610 20-NOV-05
12345 10-DEC-05 590 620 31-0CT-05
12346 20-NOV-05 630 590 31-0CT-05

© SunGard 2004-2007

Page 255

Introduction to Oracle

Section N: Answer Key for Self Check
Exercises

Lesson: Section D — Answer Key (Continued)

< Jump to 100

Exercise 9

Retrieve the student records where the student took the SAT between '01-JAN-05'
and '31-MAY-05' (if the two digit year does not work try entering the four digit year).

SQL> SELECT * FROM swrtest
WHERE swrtest_test_date BETWEEN "01-JAN-05" AND "31-MAY-057;

SWRTEST_PIDM SWRTEST_T SWRTEST_SAT_VERBAL SWRTEST_SAT_MATH SWRTEST_A

12340 01-MAR-05 550 480 31-0CT-05
12341 03-MAR-05 530 580 31-0CT-05
12342 13-FEB-05 660 520 31-0CT-05
12343 03-FEB-05 530 420 11-0CT-05

© SunGard 2004-2007 Introduction to Oracle

Page 256

Section N: Answer Key for Self Check
Exercises

Lesson: Section E— Answer Key

«f Jump to T0OC

Exercise 1
In the SWRREGS table, what is the average GPA of all the classes that PIDM 12342 took?

SQL> SELECT AVG(NVL(swrregs_gpa,0))
FROM swrregs
WHERE swrregs_pidm = 12342;

AVG(NVL(SWRREGS_GPA,0))

Exercise 2
How many records does PIDM 12343 have in the SWRIDEN table?

SQL> SELECT COUNT(*)
FROM swriden
WHERE swriden_pidm = 12343;

COUNT(*)

Exercise 3

Select the PIDM and the combined score of the SAT verbal and math for each record from the
SWRTEST table.

SQL> SELECT swrtest_pidm,
NVL(swrtest_sat_verbal,0) + NVL(swrtest_sat _math,0)
FROM swrtest;

SWRTEST_PIDM NVL(SWRTEST_SAT_VERBAL,0)+NVL(SWRTEST_SAT_MATH,0)

12340 1030
12341 1110
12342 1180
12341 1200
12343 950
12345 1210
12346 1220
12346 980
12347 550
12345 500
12344 0
© SunGard 2004-2007 Introduction to Oracle

Page 257

Section N: Answer Key for Self Check
Exercises

Lesson: Section E— Answer Key (Continued)

«d Jump ta TOC

Exercise 4
Return the first name concatenated with the last name from the SWRIDEN table. Return only

rows where the uppercase value of the first name is 'PETER'.

SQL> SELECT swriden_fFfirst_name]]" "]| swriden_last_name NAME

FROM swriden
WHERE UPPER (swriden_first_name) = "PETER";

Peter Johnson

Exercise 5
What is the lowest and highest SAT verbal scores for students who took the test in March or

April 2005 using SWRTEST?

SQL> SELECT MAX(swrtest_sat_verbal), MIN(swrtest_sat_verbal)

FROM swrtest
WHERE swrtest_test_date BETWEEN "01-MAR-05" AND

"30-APR-05";

MAX(SWRTEST_SAT_VERBAL) MIN(SWRTEST_SAT_VERBAL)

Introduction to Oracle

© SunGard 2004-2007
Page 258

Section N: Answer Key for Self Check
Exercises

Lesson: Section E— Answer Key (Continued)

< Jump to 100

Exercise 6

Retrieve the PIDM and age (whole number) from SWBPERS. Use the birth date and current
system date to obtain the age.

SQL> SELECT swbpers_pidm,
TRUNC(MONTHS_BETWEEN(SYSDATE, swbpers_birth_date)/12) "AGE"
FROM swbpers;

SWBPERS P I1DM AGE
12340 33
12341 36
12343 33
12344 33
12345 23
12346 46
12348 65
12350 30
12352 28
12353 41
12355 46
12357 54
12359 52
© SunGard 2004-2007 Introduction to Oracle

Page 259

Section N: Answer Key for Self Check

Exercises

Lesson:

«f Jump to T0OC

Exercise 1

Section F — Answer Key

Using a combination of functions, parse the street address field into House Number, Street

Name, and Street direction.

SELECT substr(swraddr_street linel,1,

instr(swraddr_street _linel," ") -1) "House Nbr'",
substr(swraddr_street_linel, instr(swraddr_street_linel," ") +1,

instr(swraddr_street_linel," ",1,2) —

instr(swraddr_street_linel," ") -1) "Street",

substr(swraddr_street_linel,

instr(swraddr_street_linel," ",1,2) +1) "Type"

FROM swraddr;

House Nbr Street

506 Brown

210 Pine

PO BOX

23 Market

18 Chestnut
1821 Canal

21087 Streetville
2300 Leaffall

3 Ceasar

27 Macchiato

1 Titans

43 W.

21087 Streetville
359 Mustang
Exercise 2

Rd.

Palace Ln.
Blvd.

Way
Murray St.
Rd.

Ave.

Sum the amount column in the TWRACCD table assigning positive values to Trans Type C and

negative values to Trans Type P.

SELECT sum(decode(twraccd_trans_type,’P”,
twraccd_amount * -1, twraccd _amount)) "Total”

FROM twraccd;

© SunGard 2004-2007

Introduction to Oracle

Section N: Answer Key for Self Check
Exercises

Lesson: Section F - Answer Key (continued)

«f Jump ta T0C

Exercise 3
Adding to the SQL in Exercise 1, check for PO Box addresses and lump ‘PO Box’ into the Street
Name. (Hint: Use the DECODE function).

SELECT decode(substr(swraddr_street_linel,1,2), PO ,null,
substr(swraddr_street linel,1,
instr(swraddr_street _linel,” ") -1)) "House Nbr",

decode(substr(swraddr_street linel,1,2),"P0O",
substr(swraddr_street linel,1,
instr(swraddr_street_linel," ",1,2) -1),
substr(swraddr_street_linel,
instr(swraddr_street_linel,"” ") +1,
instr(swraddr_street_linel," ",1,2) —
instr(swraddr_street_linel," ") -1)) "Street",

substr(swraddr_street_linel,
instr(swraddr_street_linel," ",1,2) +1) "Type"

FROM swraddr;

House Nbr Street Type
506 Brown St
210 Pine St.
PO BOX 1035
23 Market St.
18 Chestnut Rd.
1821 Canal St.
21087 Streetville Rd.
2300 Leaffall Rd.
3 Ceasar Palace Ln.
27 Macchiato Blvd.
1 Titans Way
43 W. Murray St.
21087 Streetville Rd.
359 Mustang Ave.

Note: As you can see, this is still not a “perfect” parse of addresses as two-word street names get
broken apart, and no provision has been made for street direction.

© SunGard 2004-2007 Introduction to Oracle
Page 261

Section N: Answer Key for Self Check
Exercises

Lesson: Section G — Answer Key

«f Jump to T0OC

Exercise 1

Examine the Student Grades table (SWRREGS) using the DESC command. You will be
referring to this table for the rest of the section.

SQL> DESC swrregs

Name NulI? Type

SWRREGS_PIDM NOT NULL NUMBER(8)

SWRREGS TERM_CODE NOT NULL VARCHAR2(6)

SWRREGS_CRN NOT NULL NUMBER(5)

SWRREGS GPA NUMBER(4,2)

SWRREGS ACTIVITY_DATE NOT NULL DATE
Exercise 2

Find the average GPA for each course number. Group by the course number.

SQL> SELECT swrregs_crn, AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_crn;

SWRREGS_CRN AVG(SWRREGS_GPA)

10008 3.03333333
10009 3.275
10011 2 56666667

2.
10014 3.
10015 3.1
10016 1.
10017
. 22 rows selected.

R OIN O

© SunGard 2004-2007 Introduction to Oracle
Page 262

Section N: Answer Key for Self Check
Exercises

Lesson: Section G — Answer Key (Continued)

«d Jump to 100

Exercise 3

To easily locate the courses with particularly low averages, order your data by the average
(lowest first).

SQL> SELECT swrregs_crn, AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs crn
ORDER BY AVG(swrregs_gpa);

SWRREGS_CRN AVG(SWRREGS_GPA)

10016 1.1
10023 1.2
10018 2.4
10006 2.55
10011 2.56666667
10007 2.6
10013 2.6
10003 2.8
10001 3.02
10008 3.03333333
10005 3.05
10002 3.1

. 22 rows selected.

Exercise 4

Reduce the list so that only courses with averages below 2.0 are returned using a WHERE
clause. Did you receive an error? Why?

SQL> SELECT swrregs_crn, AVG(swrregs_gpa)
FROM swrregs
WHERE AVG(swrregs_gpa) < 2.0
GROUP BY swrregs_crn order by AVG(swrregs_gpa);

WHERE AVG(swrregs_gpa) < 2.0
*

ERROR at line 2:
ORA-00934: group function is not allowed here

© SunGard 2004-2007 Introduction to Oracle
Page 263

Section N: Answer Key for Self Check
Exercises

Lesson: Section G — Answer Key (Continued)

< Jump ta 100

Exercise 5
Try Exercise 4 again, but put the condition in a HAVING clause.

SQL> SELECT swrregs_crn, AVG(swrregs_gpa)
FROM swrregs
GROUP BY swrregs_crn
HAVING AVG(swrregs gpa) < 2.0
ORDER BY AVG(swrregs_gpa);

SWRREGS_CRN AVG(SWRREGS_GPA)

10016 1.1
10023 1.2
© SunGard 2004-2007 Introduction to Oracle

Page 264

Section N: Answer Key for Self Check
Exercises

Lesson: Section G — Answer Key (Continued)

< Jump to T0C

Exercise 6

Your institution has changed the testing format for courses 10001 through 10006 from
consecutive terms of 200402 and 200501. Examine the effects of the format change. In order to
do this, select the course number, term code, and average GPA for the above courses and terms
using SWRREGS. Group and order by course number and term code.

SQL> SELECT swrregs_crn, swrregs_term code, AVG(swrregs_gpa)
FROM swrregs
WHERE swrregs_term_code in ("200602", "200702%)
AND swrregs_crn BETWEEN 10001 AND 10006
GROUP BY swrregs_crn, swrregs_term_code
ORDER BY swrregs_crn, swrregs_term_code;

SWRREGS_CRN ~ SWRREGS_TERM_CODE AVG(SWRREGS_GPA)

10001 200702 2.8333333333333333333333333333333
10003 200602 3.9

10004 200602 3.6

10004 200702 2.8

10005 200602 3.1

10005 200702 3

10006 200602 2.3

According to the data, has the new test format had a positive or negative effect on the GPASs?

The overall average GPAs have risen for each course. Therefore, we are going to assume
that the test format has had a positive effect on the student GPAs.

© SunGard 2004-2007 Introduction to Oracle
Page 265

Section N: Answer Key for Self Check
Exercises

Lesson: Section G — Answer Key (Continued)

< Jump to 100

Exercise 7

To ensure that there is enough data to make a valid conclusion, make sure at least 3 students
have taken the course in a term for the row to be returned. Use a HAVING clause to restrict the
data being returned.

SQL> SELECT swrregs_crn, swrregs_term_code, AVG(swrregs_gpa)
FROM swrregs
WHERE swrregs_term_code between "200501" and "200702*
AND swrregs_crn BETWEEN 10001 AND 10006
GROUP BY swrregs_crn, swrregs_term_code
HAVING COUNT(*) > 2
ORDER BY swrregs_crn, swrregs_term_code;

SWRREGS_CRN ~ SWRREGS_TERM_CODE AVG(SWRREGS_GPA)

10001 200702 2.8333333333333333333333333333333333

© SunGard 2004-2007 Introduction to Oracle
Page 266

Section N: Answer Key for Self Check
Exercises

Lesson: Section H—- Answer Key

< Jumpto T0C

Exercise 1

Select the ID and combined SAT scores from the SWRIDEN and SWRTEST tables, using an
equi-join. Join by PIDM.

SQL> SELECT swriden_id, swrtest _sat verbal + swrtest sat math
FROM swriden, swrtest
WHERE swriden_pidm = swrtest_pidm
AND swriden_change_ind IS NULL
ORDER BY swriden_id, swrtest _sat verbal + swrtest_sat math;

SWRIDEN_1 SWRTEST_SAT_VERBAL+SWRTEST_SAT_MATH

822874301

843853339 980
843853339 1220
845672112 950
853954312 1180
857834585 1030
878549991 1210
878549991

882993466 1110
882993466 1200
892568211

© SunGard 2004-2007 Introduction to Oracle

Page 267

Section N: Answer Key for Self Check
Exercises

Lesson: Section H—- Answer Key (Continued)

«d Jump ta TOC

Exercise 2

Create a report that contains the same information as above (using the same tables), but also
include students who have not taken the SAT test. Use an outer join.

SQL> SELECT swriden_id, swrtest_sat verbal + swrtest sat math
FROM swriden, swrtest
WHERE swriden_pidm = swrtest_pidm (+)
AND swriden_change ind IS NULL
ORDER BY swriden_id, swrtest sat verbal + swrtest sat math;

SWRIDEN_I SWRTEST_SAT_VERBAL+SWRTEST_SAT_MATH
817253082

822874301

825110988

831603288

832092865

832763321

843853339 980
843853339 1220
845672112 950
8486565

853084511

853954312 1180
855231118

857834585 1030
861232200

862100933

872109834

878549991 1210
878549991

881337923

882993466 1110
882993466 1200
892568211

... 23 rows selected.

© SunGard 2004-2007 Introduction to Oracle
Page 268

Section N: Answer Key for Self Check
Exercises

Lesson: Section H—- Answer Key (Continued)

«d Jump ta TOC

Exercise 3

Return the PIDM(s) of the students who are in the SWRIDEN table but not in the SWRREGS
table, using the keyword MINUS.

SQL> SELECT swriden_pidm
FROM swriden
MINUS
SELECT swrregs_pidm
FROM swrregs;

Exercise 4

Find the person who has the highest SAT VERBAL score in the SWRTEST table. Show the
PIDM, Name, and test score for that person. (Hint: Use a subquery to determine the highest
score.)

SELECT swriden_pidm,
swriden_last_name || *, " || swriden_Ffirst_name
Il = ° |l swriden_mi "Name",
swrtest _sat_verbal
FROM swriden, swrtest
WHERE swriden_pidm = swrtest_pidm
AND swrtest_sat_verbal = (SELECT max(swrtest_sat_verbal)
FROM swrtest);

SWRIDEN_PIDM Name SWRTEST_SAT_ VERBAL
12342 Johnson, Peter S 660
© SunGard 2004-2007 Introduction to Oracle

Page 269

Section N: Answer Key for Self Check
Exercises

Lesson:

«f Jumpto TOC

Exercise 5

Create a query that will select the 1D, Full Name, most recent TERM, and classes registered for
that term from the SWRIDEN, SWVCRSE and SWRREGS tables. (Hint: Use a correlated
subquery to obtain the most recent TERM_CODE for each person.)

Section H—- Answer Key (Continued)

SQL> SELECT swriden_id,
swriden_last_name || *, " || swriden_Ffirst_name
Il = ° 1| swriden_mi Full_Name,
swrregs_term_code, swvcrse_crn, swvcrse_desc
FROM swriden, swvcrse, swrregs srl
WHERE swriden_pidm = srl.swrregs_pidm
AND srl.swrregs_crn = SwvCrse_crn
AND swriden_change_ind is null
AND srl.swrregs_term_code =
(SELECT max(sr2.swrregs_term_code)
FROM swrregs sr2
WHERE srl.swrregs pidm = sr2.swrregs_pidm)
ORDER BY 3,1.,4

SWRIDEN_ID FULL_NAME SWRREGS_TERM_CODE SWVCRSE_CRN SWVCRSE_DESC

892568211 Erickson, Ralph L 200608 10019 Golf
853954312 Johnson, Peter S 200701 10006 Zoology
853954312 Johnson, Peter S 200701 10009 Calculus
881337923 Serum, Tracy Paige 200701 10007 Philosophy
882993466 Smith, Robert E 200701 10018 Tennis
843853339 White, Nancy Carol 200702 10001 Writing
843853339 White, Nancy Carol 200702 10016 C Programming
845672112 Jones-Erickson, Sandy J 200702 10001 Writing
857834585 Brown, Julie K 200702 10005 Biology
857834585 Brown, Julie K 200702 10008 Psychology
857834585 Brown, Julie K 200702 10015 Speech
862100933 Clifford, Stephanie Geena 200702 10001 Writing
878549991 Erickson, Susan T 200702 10004 Physics
878549991 Erickson, Susan T 200702 10011 Anthropology

14 rows selected

© SunGard 2004-2007

Page 270

Introduction to Oracle

Section N: Answer Key for Self Check
Exercises

Lesson: Section H—- Answer Key (Continued)

«f Jump ta 100

Exercise 6

Create a SQL statement to create dynamic SQL that will issue a query against all of your tables,
returning the number of records per table that belong to Julie Brown (Hint: Get Julie’s PIDM
first). Execute the SQL that you create to make sure it works correctly.

SQL> SELECT “SELECT COUNT(*) FROM * || table_name || * WHERE =]|
2 table_name || "_PIDM = 12340;"
3 FROM user_tables;

" SELECTCOUNT (*)FROM" | | TABLE_NAME| | "WHERE" | [TABLE_NAME] | *_P1DM=12340; "

SELECT COUNT(*) FROM HIGH_MATH WHERE HIGH_MATH_PIDM = 12340;
SELECT COUNT(*) FROM HIGH_VERBAL WHERE HIGH_VERBAL_PIDM = 12340;

SELECT COUNT(*) FROM SWBPERS WHERE SWBPERS_PIDM = 12340;
SELECT COUNT(*) FROM SWRADDR WHERE SWRADDR_PIDM = 12340;
SELECT COUNT(*) FROM SWRIDEN WHERE SWRIDEN_PIDM = 12340;
SELECT COUNT(*) FROM SWRREGS WHERE SWRREGS_PIDM = 12340;
SELECT COUNT(*) FROM SWRSTDN WHERE SWRSTDN_PIDM = 12340;
SELECT COUNT(*) FROM SWRTEST WHERE SWRTEST_PIDM = 12340;
SELECT COUNT(*) FROM SWVCRSE WHERE SWVCRSE_PIDM = 12340;
SELECT COUNT(*) FROM SWVSTDN WHERE SWVSTDN_PIDM = 12340;
SELECT COUNT(*) FROM SWVTERM WHERE SWVTERM_PIDM = 12340;

SELECT COUNT(*) FROM TEMP WHERE TEMP_PIDM = 12340;

SELECT COUNT(*) FROM TERM_GPA WHERE TERM_GPA_PIDM = 12340;
SELECT COUNT(*) FROM TWRACCD WHERE TWRACCD_PIDM = 12340;
SELECT COUNT(*) FROM TWVDETC WHERE TWVDETC_PIDM = 12340;

15 rows selected.

SQL> SELECT COUNT(*) FROM HIGH_MATH WHERE HIGH_MATH_PIDM = 12340;
COUNT(*)

SQL> SELECT COUNT(*) FROM HIGH_VERBAL WHERE HIGH_VERBAL_PIDM = 12340;
COUNT(*)

SQL> SELECT COUNT(*) FROM SWBPERS WHERE SWBPERS_PIDM = 12340;
COUNT(*)

(continued..)

© SunGard 2004-2007 Introduction to Oracle
Page 271

Section N: Answer Key for Self Check
Exercises

Lesson: Section H—- Answer Key (Continued)

«f Jump to T0C

SQL> SELECT COUNT(*) FROM SWRADDR WHERE SWRADDR_PIDM
COUNT(*)

12340;

SQL> SELECT COUNT(*) FROM SWRIDEN WHERE SWRIDEN_PIDM
COUNT(*)

12340;

SQL> SELECT COUNT(*) FROM SWRREGS WHERE SWRREGS_PIDM
COUNT(*)

12340;

SQL> SELECT COUNT(*) FROM SWRSTDN WHERE SWRSTDN_PIDM
COUNT(*)

12340;

SQL> SELECT COUNT(*) FROM SWRTEST WHERE SWRTEST_PIDM
COUNT(*)

12340;

SQL> SELECT COUNT(*) FROM SWVCRSE WHERE SWVCRSE_PIDM = 12340;
SELECT COUNT(*) FROM SWVCRSE WHERE SWVCRSE_PIDM = 12340

ERROR at line 1:
ORA-00904: "SWVCRSE_PIDM": invalid identifier

SQL> SELECT COUNT(*) FROM SWVSTDN WHERE SWVSTDN_PIDM = 12340;
SELECT COUNT(*) FROM SWVSTDN WHERE SWVSTDN_PIDM = 12340
*

ERROR at line 1:
ORA-00904: "SWVSTDN_PIDM"™: invalid identifier

SQL> SELECT COUNT(*) FROM SWVTERM WHERE SWVTERM_PIDM = 12340;
SELECT COUNT(*) FROM SWVTERM WHERE SWVTERM_PIDM = 12340
*

ERROR at line 1:
ORA-00904: "SWVTERM_PIDM"™: invalid identifier

SQL> SELECT COUNT(*) FROM TEMP WHERE TEMP_PIDM = 12340;
SELECT COUNT(*) FROM TEMP WHERE TEMP_PIDM = 12340

ERROR at line 1:
ORA-00904: "TEMP_PIDM": invalid identifier

(continued..)

© SunGard 2004-2007 Introduction to Oracle
Page 272

Section N: Answer Key for Self Check
Exercises

Lesson:

< Jump ta 100

SQL> SELECT COUNT(*) FROM TERM_GPA WHERE TERM_GPA_PIDM = 12340;
COUNT(*)

Section H—- Answer Key (Continued)

SQL> SELECT COUNT(*) FROM TWRACCD WHERE TWRACCD_PIDM = 12340;
COUNT(*)

SQL> SELECT COUNT(*) FROM TWVDETC WHERE TWVDETC_PIDM = 12340;
SELECT COUNT(*) FROM TWVDETC WHERE TWVDETC_PIDM = 12340
*

ERROR at line 1:
ORA-00904: "TWVDETC_PIDM"™: invalid identifier
NOTE: Notice that using this method, not all the tables have PIDM columns. Using the
USER_TAB_COLUMNS view instead produces more accurate results.

SELECT "SELECT COUNT(*) FROM * || table_name || " WHERE "

column_name || * = 12340;"

FROM user_tab_columns

WHERE column_name like “"%PIDM";

"SELECTCOUNT(*)FROM*® | | TABLE_NAME] | "WHERE™ | | COLUMN_NAME] | "=12340; "

SELECT COUNT(*) FROM HIGH_MATH WHERE HIGH_MATH_PIDM = 12340;
SELECT COUNT(*) FROM HIGH_VERBAL WHERE HIGH_VERBAL PIDM = 12340;
SELECT COUNT(*) FROM SWBPERS WHERE SWBPERS PIDM = 12340;
SELECT COUNT(*) FROM SWRADDR WHERE SWRADDR PIDM = 12340;
SELECT COUNT(*) FROM SWRIDEN WHERE SWRIDEN_PIDM = 12340;
SELECT COUNT(*) FROM SWRREGS WHERE SWRREGS PIDM = 12340;
SELECT COUNT(*) FROM SWRSTDN WHERE SWRSTDN_PIDM = 12340;
SELECT COUNT(*) FROM SWRTEST WHERE SWRTEST_PIDM = 12340;
SELECT COUNT(*) FROM SWVTELE WHERE SWVTELE_PIDM = 12340;
SELECT COUNT(*) FROM TERM_GPA WHERE TERM_GPA PIDM = 12340;
SELECT COUNT(*) FROM TWRACCD WHERE TWRACCD_PIDM = 12340;

11 rows selected.

Note: The query using USER_TAB_COLUMNS included SWVTELE which is a VIEW,
not a table. Some of the *_TAB_* views contain information on objects other than tables.

© SunGard 2004-2007

Page 273

Introduction to Oracle

Section N: Answer Key for Self Check
Exercises

Lesson: Section | — Answer Key

- Jump ta 100

Exercise 1

Insert a new student in the SWRIDEN table using your own name, PIDM 2045 and 1D 432G.
Do not use a middle name.

SQL> INSERT INTO swriden (swriden_pidm, swriden_activity date,
swriden_id, swriden_last name,
swriden_fTirst_name)

VALUES (2045, sysdate, "432G",
"My Last Name®, "My First_Name®);

Exercise 2

Add a new student profile record in SWBPERS for the new student added in step 1, using the
following information:

Activity Date Current system date
Social Security Number 124-62-8747

Birth Date Unknown (leave null)
Marital Code Unknown (leave null)
Sex Female

Confidential Indicator Y

Note: Check the description of the table for column size constraints.

SQL> INSERT INTO swbpers (swbpers_pidm, swbpers_activity date,
swbpers_ssn, swbpers_sex, swbpers_confid_ind)
VALUES (2045,sysdate, 124628747, F","Y");

or

SQL> INSERT INTO swbpers
VALUES (2045, "124628747", NULL, NULL,
"F*,"Y", sysdate, NULL, NULL);
Exercise 3
Create a savepoint named SP1.

SQL> SAVEPOINT SP1;
Savepoint created.

© SunGard 2004-2007 Introduction to Oracle
Page 274

Section N: Answer Key for Self Check
Exercises

Lesson: Section | — Answer Key (Continued)

< Jump ta [0C

Exercise 4

Insert another row into the SWRIDEN table, but prompt the operator for each variable except
for the activity date.

SQL> INSERT INTO swriden (swriden_pidm, swriden_activity date,
swriden_id, swriden_last _name,
swriden_first _name, swriden_mi,
swriden_change_ind)

VALUES (&Internal_ID, SYSDATE, "&ID",
"&last_name®, "&First_name-,
"&middle_name®, “&change_ind");

Exercise 5

Update the new student profile record created in Exercise 2 so that the Social Security number is
635-56-1525 and the marital code is 'S' (SWBPERS).

SQL> UPDATE SWBPERS
SET swbpers_ssn = "635561525", swbpers _mrtl_code = °S*
WHERE swbpers_pidm = 2045;

or
SQL> UPDATE SWBPERS
SET swbpers_ssn = 635561525
WHERE swbpers_pidm = 2045;
SQL> UPDATE SWBPERS
SET swbpers_mrtl_code = "S-
WHERE swbpers_pidm = 2045;
Exercise 6

Roll back to savepoint SP1.

SQL> ROLLBACK TO SP1;

Exercise 7
Commit your changes.

COMMIT;

© SunGard 2004-2007 Introduction to Oracle
Page 275

Section N: Answer Key for Self Check
Exercises

Lesson: Section | — Answer Key (Continued)

< Jump to 100

Exercise 8
Delete the student profile record created in Exercise 2 (SWBPERS).

SQL> DELETE FROM swbpers
WHERE swbpers_pidm = 2045;

1 row deleted.

Exercise 9
Delete the SWRIDEN record you created in Exercise 1.

SQL> DELETE FROM swriden
WHERE swriden_pidm = 2045;
1 row deleted.

Exercise 10
Commit your changes.

COMMIT;

© SunGard 2004-2007 Introduction to Oracle
Page 276

Section N: Answer Key for Self Check
Exercises

Lesson: Section J — Answer Key

< Jump to T0C

Exercise 1
To make data retrieval faster, create an index for PIDM on SWRIDEN.

SQL> CREATE INDEX swriden_key index
ON swriden (swriden_pidm);

Index created.

Exercise 2

Create a relationship between the validation table TWVDETC and the repeating table
TWRACCD. TWVDETC should have the primary key of TWVDETC_DETC_CODE and
TWRACCD should have the foreign key of TWRACCD_DETC_CODE.

SQL> ALTER TABLE twvdetc
ADD CONSTRAINT pk_twvdetc
PRIMARY KEY (twvdetc_code);

Table altered.

SQL> ALTER TABLE twraccd
ADD CONSTRAINT fkl_ twraccd_inv_twvdetc key
FOREIGN KEY (twraccd_detc code)
REFERENCES twvdetc;
Table altered.

Exercise 3

Create a table called TEMP_XX (where XX is your user number) with the following structure:
MYNUMBER NUMBER(8)
TEXT VARCHAR2(30)
MYDATE DATE
MESSAGE VARCHAR2(50)

SQL> CREATE TABLE temp_xx
(mynumber NUMBER(8),
text VARCHAR2(30),
mydate DATE,
message VARCHAR2(50));

© SunGard 2004-2007 Introduction to Oracle
Page 277

Section N: Answer Key for Self Check
Exercises

Lesson: Section J — Answer Key (Continued)

< Jump to T0C

Exercise 4
Add a column called SWRADDR_COUNTRY_CODE, type VARCHAR2(10) NOT NULL to
the swraddr table.

What happens when you try to add a NOT NULL column to an existing table?

SQL> ALTER TABLE swraddr ADD(swraddr_country_code varchar2(10)
NOT NULL);

ALTER TABLE swraddr ADD(swraddr_country_code varchar2(10) NOT
NULL)

*

ERROR at line 1:
ORA-01758: table must be empty to add mandatory (NOT NULL) column

You cannot add a NOT NULL column to a table with data in it unless you supply a default value,
which will populate all existing rows with that default value.

SQL> ALTER TABLE swraddr ADD(swraddr_country_code varchar2(10)
DEFAULT "USA® NOT NULL);

Table altered.

Exercise 5
Add a constraint on the SWRREGS table to the SWVCRSE table on CRN. What happens?
Correct the problem and try again.

SQL> ALTER TABLE swrregs ADD CONSTRAINT fk_swrregs_ INV_swvcrse
2> FOREIGN KEY (swrregs_crn) REFERENCES swvcrse(swvcrse_crn);
(swrregs_crn) REFERENCES swvcrse(swvcrse_crn)
*

ERROR at line 2:
ORA-02270: no matching unique or primary key for this column-list

The SWVCRSE table does not have a primary key. Add a primary key on CRN.

SQL> ALTER TABLE swvcrse ADD CONSTRAINT pk_swvcrse PRIMARY KEY
(swvcrse_crn);

Table altered.

© SunGard 2004-2007 Introduction to Oracle
Page 278

Section N: Answer Key for Self Check
Exercises

Lesson: Section J — Answer Key (Continued)

«f Jumpto TOC

Exercise 5 (continued)

SQL> ALTER TABLE swrregs ADD CONSTRAINT fk_swrregs_ INV_swvcrse

2 FOREIGN KEY (swrregs_crn) REFERENCES swvcrse(swvcrse_crn);
alter table swrregs add constraint Tk_swrregs_INV_swvcrse FOREIGN
KEY

*

ERROR at line 1:
ORA-02298: cannot validate (TRAIN_ORA101.FK_SWRREGS_INV_SWVCRSE)
- parent keys not found

Why will the constraint still not create? How would you fix this problem (Hint: Use a minus
query to identify CRN records that do not match)?

The constraint will not enable because there are child CRN values in SWRREGS that do not
exist in the parent SWVCRSE table.

SQL> SELECT swrregs_crn FROM swrregs
2 MINUS
3 SELECT swvcrse_crn FROM swvcrse;

SWRREGS_CRN

At this point, you have two choices. If 10033 is a valid CRN, add that record to the SWVCRSE
table and then create the constraint. If 10033 is not a valid CRN, find out what the correct CRN
should be and change the SWRREGS record and then add the constraint. We will assume it was
supposed to be CRN 10003.

SQL> UPDATE swrregs SET swrregs_crn = 10003 WHERE swrregs _crn =
10033;

1 row updated.

SQL> ALTER TABLE swrregs ADD CONSTRAINT fk_swrregs INV_swvcrse
2 FOREIGN KEY (swrregs_crn) REFERENCES swvcrse(swvcrse_crn);

Table altered.

© SunGard 2004-2007 Introduction to Oracle
Page 279

Section N: Answer Key for Self Check
Exercises

Lesson: Section J — Answer Key (Continued)

< Jump ta [0C

Exercise 6
Add a table comment for the SWRIDEN, SWRADDR, and SWBPERS tables.

SQL> comment on table SWRIDEN is “ldentification table used in
Intro to Oracle class’;

SQL> comment on table SWRADDR is “Address Repeating Table”;
SQL> comment on table SWBPERS is “Biographical and Demographic
information on persons”;

Exercise 7
Locate your new indexes and constraints in the user_indexes, user_ind_columns,
user_constraints and user_cons_columns data dictionary views.

SQL>SELECT index_name, index_ type, table_name, uniqueness, status
FROM user_indexes;

INDEX_NAME INDEX_TYPE TABLE_NAME UNIQUENES STATUS
PK_SWVCRSE NORMAL SWVCRSE UNIQUE VALID
PK_TWVDETC NORMAL TWVDETC UNIQUE VALID
SWRIDEN_KEY_ INDEX NORMAL SWRIDEN NONUNIQUE VALID

SQL> SELECT index_name, table_name, column_name, column_position,
descend
FROM user_ind_columns;

INDEX_NAME TABLE_NAME COLUMN_NAME COL_POSITION DESC
SWRIDEN_KEY_ INDEX SWRIDEN SWRIDEN_P IDM 1 ASC
PK_SWVCRSE SWVCRSE SWVCRSE_CRN 1 ASC
PK_TWVDETC TWVDETC TWVDETC_CODE 1 ASC

SQL> SELECT constraint_name, constraint_type, table_name,
search_condition, status
FROM user_constraints

ORDER BY 2;
CONSTRAINT_NAME C TABLE_NAME SEARCH_CONDITION STATUS
SYS_C0029178 C HIGH_MATH "HIGH_MATH_PIDM™ IS NOT NULL ENABLED
SYS_C0029179 C HIGH_MATH "HIGH_MATH_TEST_DATE™ IS NOT NULL ENABLED
© SunGard 2004-2007 Introduction to Oracle

Page 280

Section N: Answer Key for Self Check
Exercises

Lesson: Section J — Answer Key (Continued)

< Jump ta [0C

Exercise 7 (Continued)

SYS_C0029176 C HIGH_VERBAL "HIGH_VERBAL_PIDM™ 1S NOT NULL ENABLED
SYS_C0029177 C HIGH_VERBAL "HIGH_VERBAL_TEST_DATE"™ IS NOT NULL ENABLED
SYS_C0029143 C SWBPERS ""'SWBPERS_PIDM™ 1S NOT NULL ENABLED
SYS_C0029144 C SWBPERS ""'SWBPERS_ACTIVITY_DATE" IS NOT NULL ENABLED
PK_SWVCRSE P SWVCRSE ENABLED
PK_TWVDETC P TWVDETC ENABLED
FK_SWRREGS_ INV_SWVCRSE R SWRREGS ENABLED
FK1_TWRACCD_INV_TWVDETC_KEY R TWRACCD ENABLED

SQL> SELECT constraint_name, table_name, column_name, position
FROM user_cons_columns;

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME POSITION
FK1_TWRACCD_INV_TWVDETC_KEY TWRACCD TWRACCD_DETC_CODE 1
FK_SWRREGS_INV_SWVCRSE SWRREGS SWRREGS_CRN 1
PK_SWVCRSE SWVCRSE SWVCRSE_CRN 1
PK_TWVDETC TWVDETC TWVDETC_CODE 1
SYS_C0029139 SWRIDEN SWRIDEN_P 1DM

SYS_C0029140 SWRIDEN SWRIDEN_ID

SYS_ 0029141 SWRIDEN SWRIDEN_LAST_NAME

SYS_C0029142 SWRIDEN SWRIDEN_ACTIVITY_DATE

SYS_ 0029143 SWBPERS SWBPERS_P 1DM

SYS_C0029144 SWBPERS SWBPERS_ACTIVITY_DATE

SYS_C0029145 SWRADDR SWRADDR_P 1DM

SYS_C0029146 SWRADDR SWRADDR_ATYP_CODE

SYS_C0029147 SWRADDR SWRADDR_STREET_LINE1

SYS_C0029148 SWRADDR SWRADDR_ACTIVITY_DATE

SYS_C0029149 TWRACCD TWRACCD_PIDM

SYS_C0029150 TWRACCD TWRACCD_TERM_CODE

SYS_C0029151 TWRACCD TWRACCD_DETC_CODE

SYS_C0029152 TWRACCD TWRACCD_TRANS_TYPE

SYS_C0029153 TWRACCD TWRACCD_BILL_DATE

SYS_C0029154 TWRACCD TWRACCD_AMOUNT

The SYS_Cxxxxxxx constraints are system generated names that Oracle assigns when you do
not create a name for your constraints. Your numbers may vary as they are sequentially assigned
by the database.

As you may have noticed, the not null constraints are created when you define the table and
column specifications. You can assign user-defined names to these constraints when you create
the table.

© SunGard 2004-2007 Introduction to Oracle
Page 281

Section N: Answer Key for Self Check
Exercises

Lesson: Section K — Answer Key

«f Jumpto TOC

Exercise 1

Create a view called SWVADDR_XX (where XX is your user number) which contains a
person’s first name, last name (combine it into one column called name), city, state, and zip
based on the SWRIDEN and SWRADDR tables.

SQL> CREATE VIEW swvaddr_XX (name, city, state, zip)
AS SELECT swriden_first_name]|® "]] swriden_last_name ,
swraddr_city, swraddr_stat _code, swraddr_zip
FROM swriden, swraddr
WHERE swriden_pidm = swraddr_pidm
AND swriden_change_ind IS NULL;

Exercise 2
Retrieve all the rows from the new view.

SQL> SELECT * FROM swvaddr_XX

Exercise 3

Grant the right to select from the view to a person sitting next to you. Make sure someone gives
you the right to select from his/her new view.

SQL> GRANT SELECT ON swvaddr_XX TO trainXX;

Exercise 4

Try to select all columns from the view you were just granted access to in Exercise 3. What
happened?

SELECT * FROM swvaddr_XX;

ERROR at line 1:
ORA-00942: table or view does not exist

This is because you did not specify the owner name in front of the view.

© SunGard 2004-2007 Introduction to Oracle
Page 282

Section N: Answer Key for Self Check
Exercises

Lesson: Section K — Answer Key (Continued)

«f Jump ta T0C

Exercise 5

Now, put the owner name in front of the table, in the syntax below. Did you get results?
SELECT * FROM <owner.table_ name>

SELECT * FROM trainXX.swvaddr_XX;

Exercise 6

Because you have to specify the owner each time you are referring to the view, create a synonym
to alleviate this.

SQL> CREATE SYNONYM swvaddr_XX
FOR trainXX.swvaddr_XX;

Exercise 7
Select all columns from the view. You should not have to specify the owner in front of the view.

SQL> SELECT * FROM swvaddr_XX;

Exercise 8

Create a sequence which will be used to generate a new PIDM. Find out what the first value
should be by finding the maximum existing PIDM +1. Insert a new row into the SWRIDEN
using your sequence to generate the PIDM.

SQL> SELECT MAX(swriden_pidm) + 1 FROM swriden;

MAX(SWRIDEN_PIDM)+1

SQL> CREATE SEQUENCE PIDM_SEQUENCE
START WITH 12360;

Sequence created.

SQL> INSERT INTO swriden (swriden_pidm, swriden_id,
swriden_last_name, swriden_activity date)
VALUES (pidm_sequence.NEXTVAL, "123ME",
"Smith®, sysdate);

© SunGard 2004-2007 Introduction to Oracle
Page 283

Section N: Answer Key for Self Check
Exercises

Lesson: Section L — Answer Key

«f Jump to T0OC

Exercise 1
Examine the SWRIDEN.DAT file that has been provided. What type of data file is it?

A comma delimited file.

Exercise 2

Create a control file that will load the data into the table. For the PIDM, use the maximum
PIDM number in the swriden table and increment by one. Use the current system date for the
activity date.

LOAD DATA

INFILE "swriden.dat”

BADFILE "swriden.bad*

DISCARDFILE "swriden.dsc”

APPEND

INTO TABLE swriden

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY *'*
TRAILING NULLCOLS

(swriden_pidm SEQUENCE(MAX, 1),
swriden_activity_date SYSDATE,
swriden_id CHAR,
swriden_last_name CHAR,
swriden_first_name CHAR,
swriden_mi CHAR,
swriden_change_ind CHAR)

Exercise 3

Run the SQL*Loader command line utility, either on your database server, or on your PC using
the instruction in the supplied SQL-Loader exercise.doc.

$sglldr <username>/<password> CONTROL = swriden.ctl

© SunGard 2004-2007 Introduction to Oracle
Page 284

Section N: Answer Key for Self Check
Exercises

Lesson: Section L — Answer Key (Continued)

< Jump to 100

Exercise 4
Examine your log file. What was the success rate? Which records, if any, did not load correctly?

Record 4 should have errored because the ID was too long. All others should have been
successfully inserted.

Exercise 5
What steps would you take to fix the records that had errors and reload the data?

You can go into your SWRIDEN.BAD file and fix the errors in the records that contained errors.
Then, you could run your control file against the SWRIDEN.BAD file instead of the
SWRIDEN.DAT file.

© SunGard 2004-2007 Introduction to Oracle
Page 285

Section N: Answer Key for Self Check
Exercises

Lesson: Section L — Answer Key

«f Jumpto T0C

Exercise 1

Create a SQL*Plus report that shows the Student ID, Name, and the courses for which they are
registered (use TERM 199702). Make a separate page for each Student. Create a title with your
institution name and a subtitle of 'Registered Courses'. Include the term in the title.

SET FEEDBACK OFF
SET ECHO OFF
CLEAR COLUMNS
CLEAR COMPUTES
CLEAR BREAKS
COLUMN NAME FORMAT a25 HEADING *Name"
COLUMN SWVCRSE_DESC FORMAT a35 HEADING "Course Name"
COLUMN SWRREGS_CRN FORMAT 99999 HEADING "Course|Number"
SET LINESIZE 80
SET PAGESIZE 60
COLUMN SWRREGS_TERM_CODE NEW_VALUE TRMVAL NOPRINT
TTITLE CENTER "BANNER University" RIGHT "Page: " -
FORMAT 999 SQL.PNO SKIP 1 CENTER "Registered Courses® SKIP 2 -
CENTER "Term Code: " TRMVAL SKIP 3
BREAK ON SWRIDEN_ID SKIP PAGE ON NAME
SPOOL REGISTR.RPT
SELECT SWRREGS_TERM_CODE, SWRIDEN_ID,
SWRIDEN_LAST NAME]||", "]l SWRIDEN_FIRST_NAME NAME,
SWRREGS_CRN, SWVCRSE_DESC

FROM SWRIDEN, SWVCRSE, SWRREGS
WHERE SWRIDEN_PIDM = SWRREGS_PIDM

AND SWRIDEN_CHANGE_IND IS NULL

AND SWRREGS_CRN = SWVCRSE_CRN

AND SWRREGS_TERM_CODE = "200502"
ORDER BY SWRREGS_TERM_CODE, SWRIDEN_LAST NAME,

SWRIDEN_FIRST_NAME, SWRREGS_CRN;

SPOOL OFF
SET FEEDBACK ON
SET ECHO ON

© SunGard 2004-2007 Introduction to Oracle
Page 286

Section N: Answer Key for Self Check
Exercises

Lesson: Section L — Answer Key (Continued)

«f Jump to T0C
Exercise 1 (continued)

BANNER University Page: 1
Registered Courses

Term Code: 200502

Course
SWRIDEN_I Name Number Course Name
857834585 Brown, Julie 10004 Physics

10017 Management Information Systems

BANNER University Page: 2
Registered Courses

Term Code: 200502

Course
SWRIDEN_I Name Number Course Name
892568211 Erickson, Ralph 10012 Statistics
10019 Golf
BANNER University Page: 3

Registered Courses

Term Code: 200502

Course
SWRIDEN_I Name Number Course Name
853954312 Johnson, Peter 10020 Swimming

10021 Economics

Exercise 2
Using the same report as Exercise 1, create it as an HTML report.

SQL> SET MARKUP HTML ON SPOOL ON

Re-execute the same query.

© SunGard 2004-2007 Introduction to Oracle
Page 287

Section O: Table Descriptions and Contents

Lesson: Overview

< Jumpto T0C

Introduction
This section provides listings for important tables and their contents.

Section contents

OVEIVIEW ...ttt ettt et e e e et e e e ab e e e ebt e e e ebee e e beeeeabeeesabeeeaabeeesabeeesabeeesabeeeaabeesseeeenes 288
SWRADDR ..o e e e e e e e e e a e e b e e e trae e e aabrees 289
SWWBPERS ... e e e e e e abrans 290
SWRIDENottt ettt e e bt e e et e e e s bt e e e e s s bb e e e e e aabbeeeesaabeeeessbbaeeesanreeeas 291
SWRREGS ... e e e e e e e e e s s s s e e e e e e e e e s s sabbrees 292
SWRSTDN ...ttt ettt e e e st e e e e s b b e e e e s e bb e e e e e aabbeeessbbeeeessabaeeeesanrreeas 294
S R T E S T e e e e e s s s bbb e e e e e e e s s s s sab b bbb e e e e e e e s s saaabaees 295
SWVCRSE ...ttt e e e st e et e e e e at e e e sat e e e bt e e ebeeeeteeeeteeeenneeeanes 296
YT AT 2 T I B P 297
SWVTERM ..ottt e e bt s b e e s s etb e e e e e bt a e e e s sabae e e e saabaeeesaanreeas 298
TWRAGCKCD ..o e e e et e e e e e e s s s s s b b a b e e s e e e e s s saarbbes 299
B INTAT AV B] = I OSSR OPRRPO 300
© SunGard 2004-2007 Introduction to Oracle

Page 288

Section O: Table Descriptions and Contents

Lesson: SWRADDR

«f Jumpto T0C

Description
SQL> DESC SWRADDR - Student address & phone number table.

Name Null? Type
SWRADDR_PIDM NOT NULL NUMBER(8)
SWRADDR_ATYP_CODE NOT NULL VARCHAR2(2)
SWRADDR_STREET_LINE1 NOT NULL VARCHAR2(30)
SWRADDR_STREET_L INE2 VARCHAR2(30)
SWRADDR_CITY VARCHAR2(20)
SWRADDR_STAT_CODE VARCHAR2(3)
SWRADDR_ZIP VARCHAR2(10)
SWRADDR_PHONE_AREA VARCHAR2(3)
SWRADDR_PHONE_NUMBER VARCHAR2(7)
SWRADDR_ACTIVITY_DATE NOT NULL DATE
SWRADDR_USER_ID VARCHAR2(30)
SWRADDR_DATA_ORIGIN VARCHAR2(30)

Contents

SQL> SELECT * FROM SWRADDR;

SWRRAD SW SWRADDR_STREET_LINE1 SWRADDR_STREET_ SWRADDR_CITY SWR SWRADDR_ZI SWR SWRADDR
12340 MA 506 Brown St. West Chester PA 19380 610 5624789
12341 PR 210 Pine St. San Francisco CA 94104-2702 415 7954323
12342 PR PO BOX 1035 1200 EIm Ln. Lexington KY 40223 859 5624789
12343 P1 23 Market St. West Chester PA 19382 610 3246734
12344 MA 18 Chestnut Rd. NewOrleans LA 70112 504 6743213
12345 PR 1821 Canal St. New York NY 10012 212 6452399
12347 P1 21087 Streetville Rd. Apt._5B Fayetteville AR 10012 870 6743213
12350 MA 2300 Leaffall Rd. Dallas TX 75202 469 6743213
12352 PR 3 Ceasar Palace Ln. 2nd FI. Reno NV 89502 775 6743213
12358 MA 27 Macchiato Blvd. 15th FI. Seattle WA 98108 206 6743213
12356 P1 1 Titans Way Nashville TN 37213 615 5654300
12355 P1 43 W. Murray St. Bartlett NH 03812 603 6743213
12348 P1 21087 Streetville Rd. Chicago IL 60605 312 6743213
12349 P1 359 Mustang Ave. Dearborn MI 48124 679 6743213
12999 P1 7427 Cornell PI. Wesmont VA 23456 211 1234567

SWRADDR_A USERID ORIGIN SWRA

15-NOV-05 TRAIN_ORA101 TRAINING USA
14-NOV-05 TRAIN_ORA101 TRAINING USA
12-NOV-05 TRAIN_ORA101 TRAINING USA
02-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
06-DEC-05 TRAIN_ORA101 TRAINING USA
08-DEC-05 TRAIN_ORA101 TRAINING USA

© SunGard 2004-2007 Introduction to Oracle
Page 289

Section O: Table Descriptions and Contents

Lesson: SWBPERS

- Jump ta 100

Description
SQL> DESC SWBPERS

-Student profile table.

Name Null? Type
SWBPERS PIDM NOT NULL NUMBER(8)
SWBPERS_SSN VARCHAR2(9)
SWBPERS BIRTH_DATE DATE
SWBPERS_MRTL_CODE VARCHAR2(1)
SWBPERS_SEX VARCHAR2(1)
SWBPERS_CONFID_IND VARCHAR2(1)
SWBPERS_ACTIVITY_DATE NOT NULL DATE
SWBPERS_USER_ID VARCHAR2(30)
SWBPERS_DATA _ORIGIN VARCHAR2(30)

Contents

SQL> SELECT * FROM SWBPERS;

SWBPERS PIDM SWBPERS S SWBPERS B S S S SWBPERS A SWBPERS USER SWBPERS
12340 585442212 02-AUG-73 S F Y 31-0CT-05 TRAIN_ORA101 TRAINING
12341 682082678 12-NOV-70 M M N 10-DEC-05 TRAIN_ORA101 TRAINING
12343 555444412 22-SEP-73 S F Y 05-DEC-05 TRAIN_ORA101 TRAINING
12344 198767345 30-0CT-73 S M N 08-DEC-05 TRAIN_ORA101 TRAINING
12345 955433412 05-JAN-84 W F N 07-DEC-05 TRAIN_ORA101 TRAINING
12346 643091257 15-FEB-61 D F N 07-DEC-05 TRAIN_ORA101 TRAINING
12348 231560987 25-MAR-41 M F N 07-DEC-05 TRAIN_ORA101 TRAINING
12350 340541234 01-APR-76 W F N 07-DEC-05 TRAIN_ORA101 TRAINING
12352 189054387 19-MAY-78 D M N 07-DEC-05 TRAIN_ORA101 TRAINING
12353 035341098 29-JUN-65 M M N 07-DEC-05 TRAIN_ORA101 TRAINING
12355 608321875 04-JUL-60 W F Y 07-DEC-05 TRAIN_ORA101 TRAINING
12357 430896512 27-NOV-52 M M Y 07-DEC-05 TRAIN_ORA101 TRAINING
12359 318760932 31-DEC-54 D F Y 07-DEC-05 TRAIN_ORA101 TRAINING

© SunGard 2004-2007

Page 290

Introduction to Oracle

Section O: Table Descriptions and Contents

Lesson: SWRIDEN

- Jump ta 100

Description
SQL> DESC SWRIDEN - Student master identification table.

Name Null? Type

SWRIDEN PIDM NOT NULL NUMBER(8)
SWRIDEN_ID NOT NULL VARCHAR2(9)
SWRIDEN_LAST_ NAME NOT NULL VARCHAR2(25)
SWRIDEN_FIRST_NAME VARCHAR2(15)
SWRIDEN_MI VARCHAR2(15)
SWRIDEN_CHANGE_ IND VARCHAR2(1)
SWRIDEN_ACTIVITY_DATE NOT NULL DATE
SWRIDEN_USER_ID VARCHAR2(30)
SWRIDEN_DATA ORIGIN VARCHAR2(30)

Contents

SQL> SELECT * FROM SWRIDEN;

SWRIDE SWRIDEN_I1 SWRIDEN_LAST_NA SWRIDEN_FIRST_N SWRIDEN_MI S SWRIDEN_A SWRIDEN_USER SWRIDEN_DA

12340 857834585 Brown Julie K 20-DEC-05 TRAIN_ORA101 TRAINING
12340 876536782 Brown Julie K I 20-DEC-05 TRAIN_ORA101 TRAINING
12341 882993466 Smith Robert E 20-DEC-05 TRAIN_ORA101 TRAINING
12342 853954312 Johnson Peter S 20-DEC-05 TRAIN_ORA101 TRAINING
12343 845672112 Jones Sandy J N 20-DEC-05 TRAIN_ORA101 TRAINING
12343 845672112 Jones-Erickson Sandy J 20-DEC-05 TRAIN_ORA101 TRAINING
12344 892568211 Erickson Ralph L 20-DEC-05 TRAIN_ORA101 TRAINING
12345 878549991 Erickson Susan T 20-DEC-05 TRAIN_ORA101 TRAINING
12346 843853339 White Nancy carol 20-DEC-05 TRAIN_ORA101 TRAINING
12347 822874301 Marx Joan Elizabeth 20-DEC-05 TRAIN_ORA101 TRAINING
12348 862100933 Clifford Stephanie Geena 20-DEC-05 TRAIN_ORA101 TRAINING
12349 881337923 Serum Tracy Paige 20-DEC-05 TRAIN_ORA101 TRAINING
12350 817253082 Dukes Michelle Q 20-DEC-05 TRAIN_ORA101 TRAINING
12350 817253082 Vaughn Michelle Q N 20-DEC-05 TRAIN_ORA101 TRAINING
12351 029348721 Dukes Frederick C I 20-DEC-05 TRAIN_ORA101 TRAINING
12351 029348721 Jordan Marcus 1 N 20-DEC-05 TRAIN_ORA101 TRAINING
12351 872109834 Dukes Frederick C 20-DEC-05 TRAIN_ORA101 TRAINING
12352 825110988 Johnson Jeremy P 20-DEC-05 TRAIN_ORA101 TRAINING
12353 861232200 Johnson lan G 20-DEC-05 TRAIN_ORA101 TRAINING
12354 831603288 Bristow Brandon A 20-DEC-05 TRAIN_ORA101 TRAINING
12355 855231118 McNair Tracy A 20-DEC-05 TRAIN_ORA101 TRAINING
12355 855231118 Goode Tracy A N 20-DEC-05 TRAIN_ORA101 TRAINING
12356 832092865 Miner Christopher u 20-DEC-05 TRAIN_ORA101 TRAINING
12357 832763321 Roberson Devon 0 20-DEC-05 TRAIN_ORA101 TRAINING
12357 832736321 Roberson Devon 0 I 20-DEC-05 TRAIN_ORA101 TRAINING
12359 853084511 Peterson Amy H 20-DEC-05 TRAIN_ORA101 TRAINING
12358 8486565 Jameson Jennifer w 28-DEC-05 TRAIN_ORA101 TRAINING
© SunGard 2004-2007 Introduction to Oracle

Page 291

Section O: Table Descriptions and Contents

Lesson: SWRREGS

< Jumpto T0C
Description
SQL> DESC SWRREGS --Student course registration table.
Name Null? Type
SWRREGS_PIDM NOT NULL NUMBER(8)
SWRREGS_TERM_CODE NOT NULL VARCHAR2(6)
SWRREGS_CRN NOT NULL NUMBER(5)
SWRREGS_GPA NUMBER(4,2)
SWRREGS_ACTIVITY_DATE NOT NULL DATE
© SunGard 2004-2007 Introduction to Oracle

Page 292

Section O: Table Descriptions and Contents

Lesson: SWRREGS (Continued)

Contents

SQL> SELECT * FROM SWRREGS;
SWRREGS_PI1DM SWRREGS_TERM_CODE SWRREGS_CRN SWRREGS_GPA SWRREGS_ACTIVITY_DATE
12340 200608 10001 3.2 25-SEP-07
12349 200608 10001 3.4 25-SEP-07
12349 200701 10007 3.1 25-SEP-07
12346 200702 10001 2.6 25-SEP-07
12348 200702 10001 2.9 25-SEP-07
12343 200702 10001 3 25-SEP-07
12340 200602 10007 2.1 25-SEP-07
12340 200702 10015 2.8 25-SEP-07
12340 200602 10017 25-SEP-07
12340 200602 10004 25-SEP-07
12340 200702 10008 2 25-SEP-07
12340 200702 10005 3 25-SEP-07
12340 200602 10009 3.2 25-SEP-07
12340 200602 10005 3.1 25-SEP-07
12341 200608 10014 3.2 25-SEP-07
12341 200701 10018 2.4 25-SEP-07
12341 200602 10023 1.2 25-SEP-07
12341 200602 10024 3.1 25-SEP-07
12342 200602 10021 25-SEP-07
12342 200602 10020 25-SEP-07
12342 200602 10013 2.6 25-SEP-07
12342 200602 10008 3.3 25-SEP-07
12342 200608 10011 3.3 25-SEP-07
12342 200608 10002 3.4 25-SEP-07
12342 200701 10033 2.3 25-SEP-07
12342 200701 10006 2.8 25-SEP-07
12342 200701 10009 2.9 25-SEP-07
12342 200602 10006 2.3 25-SEP-07
12343 200602 10008 3.8 25-SEP-07
12343 200701 10009 4 25-SEP-07
12343 200602 10011 1.6 25-SEP-07
12344 200602 10012 25-SEP-07
12344 200608 10019 25-SEP-07
12344 200602 10004 3.6 25-SEP-07
12345 200701 10003 2.2 25-SEP-07
12345 200702 10004 2.8 25-SEP-07
12345 200702 10011 2.8 25-SEP-07
12345 200602 10003 3.9 25-SEP-07
12345 200602 10009 3 25-SEP-07
12345 200701 10002 2.8 25-SEP-07
12346 200702 10016 1.1 25-SEP-07
12346 200602 10005 25-SEP-07
12346 200701 10015 3.5 25-SEP-07
12346 200701 10024 3.6 25-SEP-07
44 rows selected
© SunGard 2004-2007 Introduction to Oracle

Page 293

Section O: Table Descriptions and Contents

Lesson:

< Jumpto T0C

Description

SQL> DESC SWRSTDN

SWRSTDN

— Student standing table.

SWRSTDN_P IDM

SWRSTDN_STDN_CODE

SWRSTDN_DATE

SWRSTDN_ACTIVITY_DATE

Contents

NOT NULL NUMBER(8)
NOT NULL VARCHAR2(2)
NOT NULL DATE

NOT NULL DATE

SQL> SELECT * FROM SWRSTDN;

SWRSTDN_PIDM SW

SWRSTDN_D

SWRSTDN_A

7 rows selected.

23-FEB-05
23-FEB-05
23-FEB-05
20-DEC-05
20-DEC-05
20-DEC-05
20-DEC-05

23-FEB-05
23-FEB-05
23-FEB-05
20-DEC-05
20-DEC-05
20-DEC-05
20-DEC-05

© SunGard 2004-2007

Introduction to Oracle
Page 294

Section O: Table Descriptions and Contents

Lesson: SWRTEST

«f Jump to 100

Description
SQL> DESC SWRTEST - Student test score table.

Name Null? Type
SWRTEST _PIDM NOT NULL NUMBER(8)
SWRTEST_TEST_DATE NOT NULL DATE
SWRTEST_SAT_VERBAL NUMBER(3)
SWRTEST_SAT_MATH NUMBER(3)
SWRTEST_ACTIVITY_DATE NOT NULL DATE

Contents

SQL> SELECT * FROM swrtest;

SWRTEST_PIDM SWRTEST_T SWRTEST_SAT_VERBAL SWRTEST_SAT_MATH SWRTEST_A

12340 01-MAR-05 550 480 31-0CT-05
12341 03-MAR-05 530 580 31-0CT-05
12342 13-FEB-05 660 520 31-0CT-05
12341 08-JUN-05 590 610 20-NOV-05
12343 03-FEB-05 530 420 11-0CT-05
12345 10-DEC-05 590 620 31-0CT-05
12346 20-NOV-05 630 590 31-0CT-05
12346 10-DEC-05 520 460 18-DEC-05
12347 30-NOV-05 550 15-DEC-05
12345 30-NOV-05 500 15-DEC-05
12344 05-DEC-05 08-DEC-05

11 rows selected.

© SunGard 2004-2007 Introduction to Oracle
Page 295

Section O: Table Descriptions and Contents

Lesson: SWVCRSE

«f Jump ta T0C

Description
SQL> DESC SWVCRSE --Course validation table.

Name Null? Type

SWVCRSE_CRN NOT NULL NUMBER(5)

SWVCRSE_DESC NOT NULL VARCHAR2(30)

SWVCRSE_CREDIT_HOURS NUMBER(3)

SWVCRSE_ACTIVITY_DATE NOT NULL DATE
Contents

SQL> SELECT * FROM SWVCRSE;

SWVCRSE_CRN SWVCRSE_DESC SWVCRSE_CREDIT_HOURS SWVCRSE_A
10001 Writing 20-DEC-05
10002 European History 20-DEC-05
10003 Algebra 20-DEC-05
10004 Physics 20-DEC-05
10005 Biology 20-DEC-05
10006 Zoology 20-DEC-05
10007 Philosophy 20-DEC-05
10008 Psychology 20-DEC-05
10009 Calculus 20-DEC-05
10010 Literature 20-DEC-05
10011 Anthropology 20-DEC-05
10012 Statistics 20-DEC-05
10013 Oil Painting 20-DEC-05
10014 Pottery 20-DEC-05
10015 Speech 20-DEC-05
10016 C Programming 20-DEC-05
10017 Management Information Systems 20-DEC-05
10018 Tennis 20-DEC-05
10019 GolTf 20-DEC-05
10020 Swimming 20-DEC-05
10021 Economics 20-DEC-05
10022 Accounting 20-DEC-05
10023 Geometry 20-DEC-05
10024 Photography 20-DEC-05

NBRWWNNNWRWNNWANAWWWOWWWANW

24 rows selected.

© SunGard 2004-2007 Introduction to Oracle
Page 296

Section O: Table Descriptions and Contents

Lesson: SWVSTDN

< Jumpto T0C

Description
SQL> DESC SWVSTDN - Validation table for standing codes.

Name Null? Type
SWVSTDN_CODE NOT NULL VARCHAR2(2)
SWVSTDN_DESC VARCHAR2(30)
SWVSTDN_ACTIVITY_DATE NOT NULL DATE

Contents

SQL> SELECT * FROM SWVSTDN;

SW SWVSTDN_DESC SWVSTDN_A
GS Good Standing 20-DEC-05
HS Honor Student 20-DEC-05
PB Probation 20-DEC-05
SS Suspended 20-DEC-05
GR Graduate 20-DEC-05
GH Graduate with honors 20-DEC-05

6 rows selected.

© SunGard 2004-2007 Introduction to Oracle
Page 297

Section O: Table Descriptions and Contents

Lesson: SWVTERM

«f Jump ta T0C

Description
SQL> DESC SWVTERM — Validation table for term code.
Name Nul I? Type

SWVTERM_TERM_CODE NOT NULL VARCHAR2(6)
SWVTERM_DESC VARCHAR2(30)
SWTERM_ACTIVITY_DATE NOT NULL DATE

Contents
SQL> SELECT * FROM SWVTERM;

SWVTERM_TERM_CODE SWVTERM_DESC SWTERM_ACTIVITY_DATE

200501 Spring Semester 2005 25-SEP-07
200502 Spring Semester 2005 25-SEP-07
200502 Spring Semester 2005 25-SEP-07
200505 Summer Semester 2005 25-SEP-07
200508 Fall Semester 2005 25-SEP-07
200602 Spring Semester 2006 25-SEP-07
200605 Summer Semester 2006 25-SEP-07
200608 Fall Semester 2006 25-SEP-07
200608 Fall Semester 2006 25-SEP-07
200701 Spring Semester 2007 25-SEP-07
200702 Spring Semester 2007 25-SEP-07
200705 Summer Semester 2007 25-SEP-07
200708 Fall Semester 2007 25-SEP-07
200801 Spring Semester 2008 25-SEP-07
200805 Summer Semester 2008 25-SEP-07
200808 Fall Semester 2008 25-SEP-07
200901 Spring Semester 2009 25-SEP-07
200905 Summer Semester 2009 25-SEP-07
200908 Fall Semester 2009 25-SEP-07

19 rows selected

© SunGard 2004-2007 Introduction to Oracle

Page 298

Section O: Table Descriptions and Contents

Lesson: TWRACCD

- Jump to 100
Description
SQL> DESC TWRACCD --Account detail table.

Name Null? Type
TWRACCD_PI1DM NOT NULL NUMBER(8)
TWRACCD_TERM_CODE NOT NULL VARCHAR2(6)
TWRACCD_DETC_CODE NOT NULL VARCHAR2(4)
TWRACCD_TRANS_TYPE NOT NULL VARCHAR2(1)
TWRACCD_BILL_DATE NOT NULL DATE
TWRACCD_AMOUNT NOT NULL NUMBER(7,2)
TWRACCD_BALANCE NUMBER(7,2)
TWRACCD_PAID_DATE DATE
TWRACCD_ACTIVITY_DATE NOT NULL DATE

© SunGard 2004-2007 Introduction to Oracle

Page 299

Section O: Table Descriptions and Contents

Lesson: TWVDETC

«f Jump to 100
Description
SQL> DESC TWVDETC — Detail code validation table.

Name Null? Type
TWVDETC_CODE NOT NULL VARCHAR2(4)
TWVDETC_DESC VARCHAR2(30)
TWVDETC_ACTIVITY_DATE NOT NULL DATE

Contents

SQL> SELECT * FROM TWVDETC;

TWVD TWVDETC_DESC TWVDETC_A
TUIT Tuition Charges 20-DEC-05
BOOK Book Charges 20-DEC-05
DORM Dorm Charges 20-DEC-05
MEAL Meal Plan Charges 20-DEC-05
LABS Lab Fee Charges 20-DEC-05
CHEK Check Payment 20-DEC-05
CASH Cash Payment 20-DEC-05
CRED Credit Card Payment 20-DEC-05
FAID Financial Aid Payment 20-DEC-05

9 rows selected.

© SunGard 2004-2007 Introduction to Oracle
Page 300

Section P: Related Files

Lesson: Overview

< Jumpto T0C

Introduction
This section provides listings for some important data files.

Section contents

OV BIVIBWY ..ttt s s s e e s s s e e e nn e nnnnnnnnnn 301
Create_eXercise_tableS.SOIccvoviiieiice e 302
YT [0 L= o3 TR 312
SWVTTORNL AL .o eeee ettt et e e e e oo e ettt e e e e e e e et e eeee e e e e ee e eeeeeeeeeaeneaes 313
© SunGard 2004-2007 Introduction to Oracle

Page 301

Section P: Related Files

Lesson: Create _exercise_tables.sql

- Jump ta 100

Listing
set feedback 6 echo off term on pause off

= =

-- Changed columns to use proper Banner naming conventions

-- Changed swbaddr to swraddr to be closer to Banner standard
-- DW 12/2005

-- Consolidated scripts for use with OR101, OR102 and OR106

= s =

--prompt Setting up tables.._please wait.

--PERSON INDENTIFICATION TABLE

DROP TABLE SWRIDEN;
CREATE TABLE SWRIDEN

(SWRIDEN_P1DM NUMBER(8) NOT NULL,
SWRIDEN_ID VARCHAR2(9) NOT NULL,
SWRIDEN_LAST_NAME VARCHAR2(25) NOT NULL,
SWRIDEN_FIRST_NAME VARCHAR2(15),
SWRIDEN_MI VARCHAR2(15),
SWRIDEN_CHANGE_IND VARCHAR2(1),
SWRIDEN_ACTIVITY_DATE DATE NOT NULL,
SWRIDEN_USER_ID VARCHAR2(30),
SWRIDEN_DATA_ORIGIN VARCHAR2(30)) ;

INSERT INTO SWRIDEN VALUES

(12340, "857834585" , "Brown™, "Julie”, "K" ,NULL,SYSDATE,USER, "TRAINING");
INSERT INTO SWRIDEN VALUES

(12340, 8765367827, "Brown™, "Julie”, "K", " 1" ,SYSDATE,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12341, 7882993466" , "Smith", "Robert”, "E" ,NULL,SYSDATE,USER, "TRAINING™) ;
INSERT INTO SWRIDEN VALUES
(12342,7853954312", "Johnson*”, "Peter”, "S" ,NULL,SYSDATE,USER, "TRAINING") ;
INSERT INTO SWRIDEN VALUES

(12343, 7845672112" ,*Jones*", "Sandy","J", "N",SYSDATE ,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12343, 7845672112, *Jones-Erickson*, "Sandy*, "J" ,NULL,SYSDATE,USER, "TRAINING") ;
INSERT INTO SWRIDEN VALUES
(12344,7892568211", "Erickson”, "Ralph®,"L" ,NULL,SYSDATE,USER, "TRAINING");
INSERT INTO SWRIDEN VALUES

(12345, 7878549991" , "Erickson”, "Susan®, "T" ,NULL,SYSDATE,USER, "TRAINING");
INSERT INTO SWRIDEN VALUES

(12346, "843853339", "White", "Nancy", "Carol " ,NULL,SYSDATE ,USER, "TRAINING") ;
INSERT INTO SWRIDEN VALUES

(12346, "843853339", "LeBlanc”, "Nancy", "C", "N" ,SYSDATE,USER, "TRAINING™) ;
INSERT INTO SWRIDEN VALUES

(12347,7822874301", "Marx", "Joan" , "Elizabeth” ,NULL,SYSDATE,USER, "TRAINING") ;
INSERT INTO SWRIDEN VALUES

(12348, 8621009337, "Clifford", "Stephanie”, "Geena” ,NULL,SYSDATE,USER, "TRAINING™) ;
INSERT INTO SWRIDEN VALUES

(12349, 7881337923", "Serum” , "Tracy", "Paige” ,NULL,SYSDATE,USER, "TRAINING") ;

© SunGard 2004-2007 Introduction to Oracle
Page 302

INSERT INTO SWRIDEN VALUES

(12350, "817253082", "Dukes™, "Michelle", "Q" ,NULL,SYSDATE,USER, "TRAINING");

INSERT INTO SWRIDEN VALUES

(12350, "817253082", "Vaughn*, "Michelle®",*Q", "N" ,SYSDATE,USER, "TRAINING™);

INSERT INTO SWRIDEN VALUES

(12351, 7029348721", "Dukes™, "Frederick®,"C", " 1" ,SYSDATE,USER, "TRAINING™);

INSERT INTO SWRIDEN VALUES

(12351, 70293487217, "Jordan”, "Marcus®, "1, "N",SYSDATE,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12351, "872109834" , "Dukes”, "Frederick", "C" ,NULL,SYSDATE,USER, "TRAINING");

INSERT INTO SWRIDEN VALUES

(12352, 7825110988" , "Johnson*”, "Jeremy~, "P~" ,NULL, SYSDATE,USER, "TRAINING™);

INSERT INTO SWRIDEN VALUES

(12353, 8612322007, "Johnson”, "lan”, "G" ,NULL,SYSDATE,USER, "TRAINING") ;

INSERT INTO SWRIDEN VALUES

(12354, 7831603288", "Bristow", "Brandon”, A" ,NULL, SYSDATE,USER, "TRAINING");

INSERT INTO SWRIDEN VALUES

(12355, "855231118", "McNair~,"Tracy", "A" ,NULL,SYSDATE,USER, "TRAINING™);

INSERT INTO SWRIDEN VALUES

(12355, "855231118", "Goode ", "Tracy", "A", "N" ,SYSDATE,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12356, "832092865" , "Miner ", "Christopher®, "U" ,NULL,SYSDATE,USER, "TRAINING") ;

INSERT INTO SWRIDEN VALUES

(12357, 78327633217, "Roberson”, "Devon®, "0 ,NULL, SYSDATE,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12357, 78327363217, "Roberson”, "Devon®,"0", " 1" ,SYSDATE,USER, "TRAINING")

INSERT INTO SWRIDEN VALUES

(12358, "8486565" , "Jameson”, "Jennifer”, "W" ,NULL, SYSDATE,USER, "TRAINING™) ;

INSERT INTO SWRIDEN VALUES

(12359, "853084511", "Peterson”, "Amy"~, "H" ,NULL, SYSDATE,USER, "TRAINING™) ;

--GENERAL PERSON TABLE

DROP TABLE SWBPERS;
CREATE TABLE SWBPERS

(SWBPERS_PIDM NUMBER(8) not null,
SWBPERS_SSN VARCHAR2(9),
SWBPERS_BIRTH_DATE DATE,
SWBPERS_MRTL_CODE VARCHAR2(1),

SWBPERS_SEX VARCHAR2(1),
SWBPERS_CONFID_IND VARCHAR2(1),
SWBPERS_ACTIVITY_DATE DATE NOT NULL,
SWBPERS_USER_ID VARCHAR2(30),
SWBPERS_DATA_ORIGIN VARCHAR2(30));

INSERT INTO SWBPERS VALUES

(12340, "585442212" ,to_date("02-AUG-1973", "DD-MON-YYYY"),"S","F","Y" ,SYSDATE-50,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

(12341, 7682082678 ,to_date("12-NOV-1970*, "DD-MON-YYYY"), *M",*M", *N" ,SYSDATE-10,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

(12343, 7555444412 ,to_date("22-SEP-1973", "DD-MON-YYYY"), "S*","F","Y" ,SYSDATE-15,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

(12344,7198767345" ,to_date("30-0CT-1973", "DD-MON-YYYY*"),"S","M",*N" ,SYSDATE-12,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

(12345, 79554334127 ,to_date("05-JAN-1984" , "DD-MON-YYYY"), "W","F", "N ,SYSDATE-13,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

(12346, "643091257" ,to_date("15-FEB-1971", "DD-MON-YYYY"), "D", "F", "N ,SYSDATE-13,USER,

"TRAINING™);
INSERT INTO SWBPERS VALUES

© SunGard 2004-2007

Page 303

Introduction to Oracle

(12348, 231560987 " , to_date("25-MAR-1941", "DD-MON-YYYY"), "M, "F", "N ,SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12350, "340541234" ,to_date("01-APR-1976", "DD-MON-YYYY*"), "W","F",*N" ,SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12352, "189054387" ,to_date("19-MAY-1978", "DD-MON-YYYY"), "D", "M", "N ,SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12353, "035341098" , to_date("29-JUN-1965", "DD-MON-YYYY"), "M, "M~ , "N",SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12355, "608321875" , to_date("04-JUL-1960", "DD-MON-YYYY"), "W","F","Y" ,SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12357, 74308965127, to_date("27-NOV-1962°, "DD-MON-YYYY"), "M, "M", "Y" ,SYSDATE-13,USER,
"TRAINING™);

INSERT INTO SWBPERS VALUES

(12359, "318760932" ,to_date("31-DEC-1964*, "DD-MON-YYYY*"),"D","F","Y" ,SYSDATE-13,USER,
"TRAINING™);

--PERSON ADDRESS TABLE

DROP TABLE SWRADDR;
CREATE TABLE SWRADDR

(SWRADDR_PI1DM NUMBER(8) NOT NULL,

SWRADDR_ATYP_CODE
SWRADDR_STREET_LINE1
SWRADDR_STREET_LINE2

VARCHAR2(2) NOT NULL,
VARCHAR2 (30)NOT NULL,
VARCHAR2(30),

SWRADDR_CITY VARCHAR2(20),
SWRADDR_STAT_CODE VARCHAR2(3),
SWRADDR_ZI1P VARCHAR2(10),

SWRADDR_PHONE_AREA VARCHAR2(3),
SWRADDR_PHONE_NUMBER VARCHAR2(7),
SWRADDR_ACTIVITY_DATE DATE NOT NULL,
SWRADDR_USER_ID VARCHAR2(30),
SWRADDR_DATA_ORIGIN VARCHAR2(30)) ;

INSERT INTO SWRADDR VALUES

(12340, "MA","506 Brown St." ,NULL, "West Chester”,"PA","19380","610","5624789" ,SYSDATE-
35,USER, "TRAINING™);

INSERT INTO SWRADDR VALUES

(12341,°PR*","210 Pine St.",NULL,"San Francisco”,"CA","94104-

27027 ,7415",77954323" ,SYSDATE-36,USER, "TRAINING™) ;

INSERT INTO SWRADDR VALUES

(12342,°PR*","PO BOX 1035","1200 Elm

Ln.*", "Lexington®, "KY",b"40223","859","5624789" ,SYSDATE-38,USER, "TRAINING™) ;

INSERT INTO SWRADDR VALUES

(12343,7P17,"23 Market St.",NULL, "West Chester”,"PA","19382","610", 3246734~ ,SYSDATE-
18,USER, "TRAINING");

INSERT INTO SWRADDR VALUES

(12344,"MA*","18 Chestnut Rd.",NULL, "New Orleans™,"LA","70112","504","6743213",SYSDATE-
14 ,USER, "TRAINING®);

INSERT INTO SWRADDR VALUES

(12345, "PR","1821 Canal St.",NULL,"New York®,*NY","10012%,"212%,"6452399" ,SYSDATE-

14 ,USER, "TRAINING™);

INSERT INTO SWRADDR VALUES

(12347,7P17,"21087 Streetville Rd.","Apt.5B",
"Fayetteville®,"AR","40012","870","6743213" ,SYSDATE-14,USER, "TRAINING™);

INSERT INTO SWRADDR VALUES

(12350, "MA", 2300 Leaffall Rd.",NULL, "Dallas”,"TX","75202","469","6743213" ,SYSDATE-
14 ,USER, "TRAINING™) ;

INSERT INTO SWRADDR VALUES

© SunGard 2004-2007 Introduction to Oracle

Page 304

(12352, "PR","3 Ceasar Palace Ln.","2nd
FI.","Reno”,"NV*","89502","775","6743213" ,SYSDATE-14 ,USER, "TRAINING");
INSERT INTO SWRADDR VALUES
(12358, "MA*", "27 Macchiato Blvd.","15th
FI1.","Seattle","WA","98108","206", "6743213" ,SYSDATE-14,USER, "TRAINING");
INSERT INTO SWRADDR VALUES
(12356,"P1","1 Titans Way",null,
"Nashville®,"TN","37213","615", "5654300" ,SYSDATE-14,USER, "TRAINING");
INSERT INTO SWRADDR VALUES
(12355,"P1","43 W. Murray St.",null,
"Bartlett”,"NH","03812","603", "6743213" ,SYSDATE-14,USER, "TRAINING™);
INSERT INTO SWRADDR VALUES
(12348,"P1","21087 Streetville Rd.",null,
"Chicago”,"IL","60605","312","6743213",SYSDATE-14 ,USER, "TRAINING");
INSERT INTO SWRADDR VALUES
(12349, "P17,"359 Mustang Ave.",null,
"Dearborn®,"MI1*","48124","679","6743213" ,SYSDATE-14,USER, "TRAINING™) ;
INSERT INTO SWRADDR VALUES
(12999, "P1","7427 Cornell PI_", null,
“"Wesmont*®, "VA®,"23456",%211","1234567" ,SYSDATE-14 ,USER, "TRAINING™);
--TELEPHONE NUMBER VIEW
CREATE OR REPLACE VIEW SWVTELE
(SWVTELE_PIDM, SWVTELE_NAME, SWVTELE_PHONE)
AS
SELECT SWRIDEN_PIDM,
SWRIDEN_LAST_NAME]]", "|ISWRIDEN_FIRST_NAME]]" " || SWRIDEN_MI,
(" | ISWRADDR_PHONE_AREA]]") "|]ISUBSTR(SWRADDR_PHONE_NUMBER,1,3)|]1"*-"11
SUBSTR(SWRADDR_PHONE_NUMBER, 4,4)
FROM SWRIDEN, SWRADDR
WHERE SWRIDEN_PIDM = SWRADDR_PIDM
AND SWRIDEN_CHANGE_IND 1S NULL;

--ACCOUNT TRANSACTION TABLE

DROP TABLE TWRACCD;

CREATE TABLE TWRACCD

(TWRACCD_PIDM NUMBER(8) NOT NULL,
TWRACCD_TERM_CODE VARCHAR2(6) NOT NULL,
TWRACCD_DETC_CODE VARCHAR2(4) NOT NULL,

TWRACCD_TRANS_TYPE VARCHAR2(1) NOT NULL,
TWRACCD_BILL_DATE DATE NOT NULL,
TWRACCD_AMOUNT NUMBER(7,2) NOT NULL,
TWRACCD_BALANCE NUMBER(7,2),

TWRACCD_PAID_DATE DATE,
TWRACCD_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO TWRACCD VALUES

(12340, 2006027, "TUIT", "C",sysdate-130,1500.50,1500.50,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12340, 2006027, "BOOK" , "C* ,sysdate-145,300.20,300.20,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12340, "200608" , "BOOK" , "P*,sysdate-312,700.00,-700.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12341, 72006087, "TUIT", "C",sysdate-320,1100.00,1100.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12341, 72006027, "DORM" , "C* , sysdate-310,500.00,500.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12341, 72006027, "CHEK" , "P" ,sysdate-90,1000.00,-1000.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12342, 72006027, "TUIT", "C",sysdate-120,1300.00,1200.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12342, 72006027, "LABS", "C" ,SYSDATE-120,50.00,50.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

© SunGard 2004-2007 Introduction to Oracle
Page 305

(12342,7200602", "MEAL", "C*,SYSDATE-220,800.50,800.50,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12343, 7200602", "TUIT", "C",SYSDATE-300,800.00,800.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12343, 7200602" , "FAID", "P",SYSDATE-300,1100.00,-1100.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344 ,7200702%,"TUIT", "C",SYSDATE-215,750.00,750.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344 ,7200702" , "BOOK" , "C* ,SYSDATE-210,400.00,400.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344,7200702","LABS","C", "10-SEP-2006",120.00,120.00, "1-NOV-2006" ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344 ,7200701", "MEAL", "C",SYSDATE-10,900.00,900.00,nul I ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344 ,7200602" , "DORM" , "C* , "7-0CT-2006",1000.00,1000.00, "27-NOV-2006" ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12344,7200701","CASH" ,"P",SYSDATE-14,800.00,-800.00,null,SYSDATE) ;
INSERT INTO TWRACCD VALUES
(12344,7200701","CRED","P",SYSDATE-33,400.50,-400.50,null ,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12345, 7200701","TUIT","C",SYSDATE-25,300.00,300.00,null,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12342,7200602" , "MEAL","C*",SYSDATE-90,400.50,400.50,null,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12346, 7200701","TUIT","C",SYSDATE-17,900.00,900.00,null,SYSDATE) ;
INSERT INTO TWRACCD VALUES

(12346, 72007017, "LABS", "C",SYSDATE-5,50.00,50.00,nul I ,SYSDATE) ;

INSERT INTO TWRACCD VALUES

(12346, 72007017, "CHEK", "P~,SYSDATE-6,950.00,-950.00,nul I ,SYSDATE) ;

-- TRANSACTION TYPE DETAIL CODE TABLE

DROP TABLE TWVDETC;

CREATE TABLE TWVDETC

(TWVDETC_CODE VARCHAR2(4) NOT NULL,

TWVDETC_DESC VARCHAR2(30),

TWVDETC_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO TWVDETC VALUES ("TUIT®, “Tuition Charges®, SYSDATE);
INSERT INTO TWVDETC VALUES ("BOOK®", "Book Charges®, SYSDATE);

INSERT INTO TWVDETC VALUES ("DORM®, "Dorm Charges®, SYSDATE);

INSERT INTO TWVDETC VALUES ("MEAL®", “Meal Plan Charges®, SYSDATE);
INSERT INTO TWVDETC VALUES ("LABS®, "Lab Fee Charges®, SYSDATE);
INSERT INTO TWVDETC VALUES ("CHEK®", "Check Payment®, SYSDATE);
INSERT INTO TWVDETC VALUES ("CASH®, "Cash Payment®, SYSDATE);

INSERT INTO TWVDETC VALUES ("CRED", "Credit Card Payment®, SYSDATE);
INSERT INTO TWVDETC VALUES ("FAID", “Financial Aid Payment®, SYSDATE);

-- TERM CODE TABLE

DROP TABLE SWVTERM;

CREATE TABLE SWVTERM

(SWVTERM_TERM_CODE VARCHAR2(6) NOT NULL,

SWVTERM_DESC VARCHAR2(30),

SWVTERM_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO SWVTERM VALUES ("200501%, "Spring Semester 2005", SYSDATE);
INSERT INTO SWVTERM VALUES ("200502", "Spring Semester 2005", SYSDATE);
INSERT INTO SWVTERM VALUES ("200502%, "Spring Semester 2005", SYSDATE);
INSERT INTO SWVTERM VALUES ("200505", "Summer Semester 2005", SYSDATE);
INSERT INTO SWVTERM VALUES ("200508%, "Fall Semester 2005", SYSDATE);
INSERT INTO SWVTERM VALUES ("200602", "Spring Semester 2006", SYSDATE);
INSERT INTO SWVTERM VALUES ("200605", "Summer Semester 2006", SYSDATE);
INSERT INTO SWVTERM VALUES ("200608", "Fall Semester 2006", SYSDATE);
INSERT INTO SWVTERM VALUES ("200608", "Fall Semester 2006", SYSDATE);

© SunGard 2004-2007 Introduction to Oracle
Page 306

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

—-- CLASS REGISTRATION TABLE

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM
SWVTERM

DROP TABLE SWRREGS;

CREATE TABLE SWRREGS

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(-
(-
(-
(-
(-
(-

(-
(-
(-
(-

200701",
200702",
2007057,
200708",
200801",
200805",
200808",
200901",
200905",
200908",

(SWRREGS_PIDM NUMBER(8) NOT NULL,
SWRREGS_TERM_CODE VARCHAR2(6) NOT NULL,
SWRREGS_CRN NUMBER(5) NOT NULL,
SWRREGS_GPA NUMBER(4,2),

SWRREGS_ACTIVITY_DATE DATE NOT NULL);

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS
SWRREGS

"Spring Semester 2007", SYSDATE)
"Spring Semester 2007", SYSDATE)
"Summer Semester 2007", SYSDATE)
"Fall Semester 2007°, SYSDATE);

"Spring Semester 2008", SYSDATE)
"Summer Semester 2008%, SYSDATE)
"Fall Semester 2008", SYSDATE);

"Spring Semester 2009", SYSDATE)
"Summer Semester 2009°, SYSDATE)
"Fall Semester 2009°, SYSDATE);

VALUES (12340, "200608",10001,3.2,SYSDATE) ;
VALUES (12349, "200608",10001,3.4,SYSDATE) ;
VALUES (12349, "200701",10007,3.1,SYSDATE) ;
VALUES (12346, "200702",10001,2.6,SYSDATE) ;
VALUES (12348, "200702",10001,2.9,SYSDATE) ;
VALUES (12343, "200702",10001,3.0,SYSDATE) ;
VALUES (12340, "200602",10007,2.1,SYSDATE) ;
VALUES(12340, "200702",10015,2.8,SYSDATE) ;
VALUES (12340, "200602" ,10017 ,NULL ,SYSDATE) ;
VALUES (12340, "200602" ,10004 ,NULL ,SYSDATE) ;
VALUES(12340, "200702",10008,2.0,SYSDATE) ;
VALUES (12340, "200702",10005,3.0,SYSDATE) ;
VALUES (12340, "200602",10009,3.2,SYSDATE) ;
VALUES (12340, "200602",10005,3.1,SYSDATE) ;
VALUES(12341, "200608",10014,3.2,SYSDATE) ;
VALUES(12341, "200701",10018,2.4,SYSDATE) ;
VALUES(12341, "200602",10023,1.2,SYSDATE) ;
VALUES(12341, "200602",10024,3.1,SYSDATE) ;
VALUES (12342, "200602",10021,NULL,SYSDATE) ;
VALUES (12342, "200602" ,10020,NULL ,SYSDATE) ;
VALUES (12342, "200602",10013,2.6,SYSDATE) ;
VALUES (12342, "200602",10008,3.3,SYSDATE) ;
VALUES(12342,"200608",10011,3.3,SYSDATE) ;
VALUES (12342, "200608",10002,3.4,SYSDATE) ;
VALUES(12342, "200701",10033,2.3,SYSDATE) ;
VALUES(12342,"200701",10006,2.8,SYSDATE) ;
VALUES(12342, "200701",10009,2.9,SYSDATE) ;
VALUES(12342, "200602" ,10006,2.3,SYSDATE) ;
VALUES (12343, "200602",10008,3.8,SYSDATE) ;
VALUES(12343, "200701",10009,4.0,SYSDATE) ;
VALUES (12343, "200602",10011,1.6,SYSDATE) ;
VALUES (12344, "200602",10012,NULL,SYSDATE) ;
VALUES (12344, "200608" ,10019,NULL,SYSDATE) ;
VALUES (12344, "200602",10004,3.6,SYSDATE) ;
VALUES (12345, "200701",10003,2.2,SYSDATE) ;
VALUES (12345, "200702" ,10004,2.8,SYSDATE) ;
VALUES (12345, "200702",10011,2.8,SYSDATE) ;
VALUES (12345, "200602",10003,3.9,SYSDATE) ;
VALUES (12345, "200602",10009,3.0,SYSDATE) ;
VALUES (12345, "200701",10002,2.8,SYSDATE) ;
VALUES(12346, "200702",10016,1.1,SYSDATE) ;
VALUES (12346, "200602" ,10005,NULL ,SYSDATE) ;
VALUES(12346, "200701",10015,3.5,SYSDATE) ;
VALUES (12346, "200701",10024,3.6,SYSDATE) ;

© SunGard 2004-2007

Page 307

Introduction to Oracle

-- COURSE TABLE

DROP TABLE SWVCRSE;
CREATE TABLE SWVCRSE

(SWVCRSE_CRN NUMBER(5) NOT NULL,
SWVCRSE_DESC VARCHAR2(30) NOT NULL,
SWVCRSE_CREDIT_HOURS NUMBER(3),

SWVCRSE_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO SWVCRSE VALUES (10001, "Writing®, 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10002, "European History®, 2,SYSDATE);
INSERT INTO SWVCRSE VALUES (10003, “Algebra®, 4,SYSDATE);
INSERT INTO SWVCRSE VALUES (10004, "Physics®, 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10005, "Biology®", 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10006, “Zoology", 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10007, “Philosophy®, 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10008, "Psychology", 3,SYSDATE):
INSERT INTO SWVCRSE VALUES (10009, "Calculus®, 4,SYSDATE);
INSERT INTO SWVCRSE VALUES (10010, “Literature”, 2,SYSDATE);
INSERT INTO SWVCRSE VALUES (10011, “Anthropology®, 4,SYSDATE);
INSERT INTO SWVCRSE VALUES (10012, "Statistics", 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10013, =Oil Painting®, 2,SYSDATE);
INSERT INTO SWVCRSE VALUES (10014, "Pottery®", 2,SYSDATE);
INSERT INTO SWVCRSE VALUES (10015, <"Speech®, 3,SYSDATE);

INSERT INTO SWVCRSE VALUES (10016, "C Programming®, 4,SYSDATE);
INSERT INTO SWVCRSE VALUES (10017, "Management Information Systems®,3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10018, "Tennis®", 2,SYSDATE);

INSERT INTO SWVCRSE VALUES (10019, "Golf", 2,SYSDATE);

INSERT INTO SWVCRSE VALUES (10020, "Swimming®, 2,SYSDATE);
INSERT INTO SWVCRSE VALUES (10021, “Economics®, 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10022, “Accounting®, 3,SYSDATE);
INSERT INTO SWVCRSE VALUES (10023, "Geometry®, 4,SYSDATE);
INSERT INTO SWVCRSE VALUES (10024, "Photography®, 2,SYSDATE);

—-- STUDENT STANDING TABLE

DROP TABLE SWRSTDN;

CREATE TABLE SWRSTDN

(SWRSTDN_PI1DM NUMBER(8) NOT NULL,

SWRSTDN_STDN_CODE VARCHAR2(2) NOT NULL,

SWRSTDN_STDN_DATE DATE NOT NULL,

SWRSTDN_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO SWRSTDN VALUES(12340,"GR",SYSDATE-300,SYSDATE-300) ;
INSERT INTO SWRSTDN VALUES(12341,"GR",SYSDATE-300,SYSDATE-300);
INSERT INTO SWRSTDN VALUES(12342,"GH",SYSDATE-300,SYSDATE-300);
INSERT INTO SWRSTDN VALUES(12343, "PB",SYSDATE,SYSDATE);

INSERT INTO SWRSTDN VALUES(12344,"SS",SYSDATE,SYSDATE);

INSERT INTO SWRSTDN VALUES(12345,"GS",SYSDATE,SYSDATE);

INSERT INTO SWRSTDN VALUES(12346, "HS",SYSDATE,SYSDATE);

-- STUDENT STANDING CODE TABLE

DROP TABLE SWVSTDN;

CREATE TABLE SWVSTDN

(SWVSTDN_CODE VARCHAR2(2) NOT NULL,
SWVSTDN_DESC VARCHAR2(30),
SWVSTDN_ACTIVITY_DATE DATE NOT NULL);

INSERT INTO SWVSTDN VALUES ("GST", "Good Standing®, SYSDATE);
INSERT INTO SWVSTDN VALUES ("HS", "Honor Student®, SYSDATE);
INSERT INTO SWVSTDN VALUES ("PB", “Probation®, SYSDATE);
INSERT INTO SWVSTDN VALUES ("SST", "Suspended”, SYSDATE);
INSERT INTO SWVSTDN VALUES ("GR", "Graduate®, SYSDATE);

© SunGard 2004-2007 Introduction to Oracle
Page 308

INSERT INTO SWVSTDN VALUES ("GH®,

-— STUDENT TEST TABLE
DROP TABLE SWRTEST;

CREATE TABLE SWRTEST
(SWRTEST_PIDM NUMBER(8) NOT NULL,
SWRTEST_TEST_DATE DATE NOT NULL,
SWRTEST_SAT_VERBAL NUMBER(3),

SWRTEST_SAT_MATH NUMBER(3).
SWRTEST_ACTIVITY_DATE DATE NOT NULL);

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO SWRTEST VALUES(12340, "01-MAR-2006",550,480,SYSDATE-50);
INTO SWRTEST VALUES(12341, "03-MAR-2006",530,580,SYSDATE-50) ;
INTO SWRTEST VALUES(12342, "13-FEB-2006",660,520,SYSDATE-50);
INTO SWRTEST VALUES(12341, "08-JUN-2006",590,610,SYSDATE-30);
INTO SWRTEST VALUES(12343, "03-FEB-2006",530,420,SYSDATE-70);
INTO SWRTEST VALUES(12345,SYSDATE-10,590,620,SYSDATE-50);
INTO SWRTEST VALUES(12346,SYSDATE-30,630,590,SYSDATE-50);
INTO SWRTEST VALUES(12346,SYSDATE-10,520,460,SYSDATE-2);
INTO SWRTEST VALUES(12347,SYSDATE-20,null,550,SYSDATE-5);
INTO SWRTEST VALUES(12345,SYSDATE-20,500,null,SYSDATE-5);
INTO SWRTEST VALUES(12344,SYSDATE-15,null,null,SYSDATE-12);

-- Base Student Table

DROP TABLE SWBSTDN;
CREATE TABLE SWBSTDN
(SWBSTDN_P1DM
SWBSTDN_TERM_CODE_EFF
SWBSTDN_STST_CODE
SWBSTDN_LEVL_CODE
SWBSTDN_ACTIVITY_DATE
SWBSTDN_DATA_ORIGIN
SWBSTDN_USER_ID

INSERT

INTO SWBSTDN VALUES

NUMBER(8) NOT NULL,
VARCHAR2(6) NOT NULL,
VARCHAR2(2) NOT NULL,

VARCHAR2(2) ,

DATE NOT NULL,

VARCHAR2(30),
VARCHAR2(30));

"Graduate with honors®, SYSDATE);

(12341, "200110", "AS","UG" , to_date("15-MAR-2000" , "DD-MON-YYYY") ,USER, "TRAINING");

INSERT

INTO SWBSTDN VALUES

(12343, 72000207, "AS", "GR" , to_date("15-FEB-1999", "DD-MON-YYYY ") ,USER, "TRAINING") ;

INSERT

INTO SWBSTDN VALUES

(12345, 72002307, "1S", "UG" , to_date("15-JUL-2001", "DD-MON-YYYY ") ,USER, "TRAINING") ;

INSERT

INTO SWBSTDN VALUES

(12347,7200230","AS", "MD", to_date("15-JUL-2001", "DD-MON-YYYY ") ,USER, "TRAINING");

INSERT

INTO SWBSTDN VALUES

(12349, 72001107, "GS", "UG" , to_date("15-MAR-2000", "DD-MON-YYYY ") ,USER, "TRAINING") ;

INSERT

INTO SWBSTDN VALUES

(12351, 72003407 ,"AS", "GR" ,to_date("15-FEB-2002", "DD-MON-YYYY ") ,USER, "TRAINING™);

INSERT

INTO SWBSTDN VALUES

(12353, 72003407 ,"1S", "GR" ,to_date("15-FEB-2002", "DD-MON-YYYY ") ,USER, "TRAINING™);

INSERT

INTO SWBSTDN VALUES

(12355, 72004107, "AS*", "UG" ,to_date("15-FEB-2003", "DD-MON-YYYY ") ,USER, "TRAINING™);

INSERT

INTO SWBSTDN VALUES

(12357,72004207 ,"AS", "LW" ,to_date("15-FEB-2003", "DD-MON-YYYY ") ,USER, "TRAINING™);

INSERT

INTO SWBSTDN VALUES

DROP TABLE SWRCMNT;
CREATE TABLE SWRCMNT
(SWRCMNT_P1DM
SWRCMNT_CMTT_CODE
SWRCMNT_TEXT
SWRCMNT_USER_ID
SWRCMNT_ACTIVITY_DATE
SWRCMNT_DATA_ORIGIN

NUMBER(8) NOT NULL,

VARCHAR2(3) NOT NULL,

VARCHAR2 (4000),

VARCHAR2(30),

DATE NOT NULL,
VARCHAR2(30)) ;

(12359, 72004107 ,"1S","UG" ,to_date("15-FEB-2003", "DD-MON-YYYY ") ,USER, "TRAINING™);

© SunGard 2004-2007

Page 309

Introduction to Oracle

INSERT INTO swrcmnt VALUES

(12340, 71007, "HELLO" ,user ,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12341,7100", "HELLO" ,user ,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12342,7100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12343,7100", "HELLO" ,user ,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12344,7100", "HELLO" ,user ,sysdate, "TRAINING™) ;

INSERT INTO swrcmnt VALUES

(12345,7100", "HELLO" ,user,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12346, 71007, "HELLO" ,user ,sysdate, "TRAINING ™) ;

INSERT INTO swrcmnt VALUES

(12347,7100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12348,7100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12349, 71007, "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12350, "100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12351,7100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12352, 71007, "HELLO" ,user,sysdate, "TRAINING™) ;

INSERT INTO swrcmnt VALUES

(12353, 71007, "HELLO" ,user ,sysdate, "TRAINING™) ;

INSERT INTO swrcmnt VALUES

(12354,7100", "HELLO" ,user ,sysdate, "TRAINING™) ;

INSERT INTO swrcmnt VALUES

(12355, 100", "HELLO" ,user,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12356, "100", "HELLO" ,user,sysdate, "TRAINING");

INSERT INTO swrcmnt VALUES

(12357,7100", "HELLO" ,user,sysdate, "TRAINING") ;

INSERT INTO swrcmnt VALUES

(12358, "100", "HELLO" ,user ,sysdate, "TRAINING™) ;

INSERT INTO swrcmnt VALUES

(12359, "100", "HELLO" ,user ,sysdate, "TRAINING™) ;

-- Base Employee Table

DROP TABLE PWBEMPL;
CREATE TABLE PWBEMPL
(PWBEMPL_P1DM
PWBEMPL_EMPL_STATUS
PWBEMPL_ECLS_CODE
PWBEMPL_FIRST_HIRE_DATE
PWBEMPL_CURRENT HIRE_DATE
PWBEMPL_TERM_DATE
PWBEMPL_ACTIVITY_DATE
PWBEMPL_USER_ID
PWBEMPL_DATA_ORIGIN

INSERT INTO PWBEMPL VALUES

NUMBER(8) NOT
VARCHAR2(1) NOT
VARCHAR2(2) NOT
DATE NOT
DATE NOT
DATE,

DATE NOT
VARCHAR2(30),
VARCHAR2(30));

NULL,
NULL,
NULL,
NULL,
NULL,

NULL,

(12340, A" ,"01",to_date("06-APR-1974" , "DD-MON-YYYY"), to_date("31-DEC-1954" , *DD-MON-
YYYY"), null,sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES

(12342,7A",701",to_date("31-JAN-1954" , "DD-MON-YYYY "), to_date("31-JAN-1954" , "DD-MON-
YYYY®™), null,sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES

(12344,"T","01",to_date("17-FEB-1954" , "DD-MON-YYYY"), to_date("17-FEB-1954" , *DD-MON-
YYYY"), to_date("15-SEP-2004","DD-MON-YYYY"),sysdate-30,USER, "TRAINING");

© SunGard 2004-2007

Page 310

Introduction to Oracle

INSERT INTO PWBEMPL VALUES
(12346,"A","01",to_date("22-JUN-1999" , "DD-MON-YYYY"), to_date("22-JUN-1999" , *DD-MON-
YYYY"), null,sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES
(12348,"A","01",to_date("02-JUN-2000" , "DD-MON-YYYY"), to_date("02-JUN-2000" , *DD-MON-
YYYY"), null,sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES

(12350, A", "01",to_date("20-JUL-2001" , "DD-MON-YYYY"), to_date("20-JUL-2001" , *DD-MON-
YYYY®), null,sysdate-30,USER, "TRAINING®);

INSERT INTO PWBEMPL VALUES
(12352,"T","01",to_date("14-JUL-2002" , "DD-MON-YYYY"), to_date("14-JUL-2002" , *DD-MON-
YYYY"), to_date("15-JUL-2002","DD-MON-YYYY"),sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES
(12354,"A","01",to_date("26-0CT-1997" , "DD-MON-YYYY"), to_date("26-0CT-1997" , *DD-MON-
YYYY®), null,sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES
(12356,"T","01",to_date("01-NOV-1995" , "DD-MON-YYYY"), to_date("01-NOV-1995" , *DD-MON-
YYYY"), to_date("01-MAY-1999","DD-MON-YYYY"),sysdate-30,USER, "TRAINING");

INSERT INTO PWBEMPL VALUES

(12358, "A","01",to_date("15-DEC-1992" , "DD-MON-YYYY"),to_date("15-DEC-1992" , *DD-MON-
YYYY"), null,sysdate-30,USER, "TRAINING");

DROP TABLE TEMP;
CREATE TABLE TEMP
(COL1 NUMBER(S),

COL2 VARCHAR2(15),
COL3 DATE,

MESSAGE VARCHAR2(60));

DROP TABLE HIGH_VERBAL;

CREATE TABLE HIGH_VERBAL
(HIGH_VERBAL_PIDM NUMBER(8) NOT NULL,
HIGH_VERBAL_VERBAL_SCORE NUMBER(3),
HIGH_VERBAL_TEST DATE DATE NOT NULL);

DROP TABLE HIGH_MATH;

CREATE TABLE HIGH_MATH
(HIGH_MATH_PIDM NUMBER(8) NOT NULL,
HIGH_MATH_MATH_SCORE NUMBER(3),
HIGH_MATH_TEST_DATE DATE NOT NULL);

DROP TABLE SWRRANK;

CREATE TABLE SWRRANK

(SWRRANK_PIDM NUMBER(8) NOT NULL,
SWRRANK_CLASS_RANK NUMBER(5),
SWRRANK_ACTIVITY_DATE DATE NOT NULL);

DROP TABLE SWRIDEN_HISTORY;

CREATE TABLE SWRIDEN_HISTORY
(SWRIDEN_HIST_PIDM NUMBER(8) NOT NULL,
SWRIDEN_HIST_ID VARCHAR2(9) NOT NULL,
SWRIDEN_HIST_LAST_NAME VARCHAR2(25) NOT NULL,
SWRIDEN_HIST_FIRST_NAME VARCHAR2(15),
SWRIDEN_HIST_MI VARCHAR2(15),
SWRIDEN_HIST_CHANGE_IND VARCHAR2(1),
SWRIDEN_HIST_ACTIVITY_DATE DATE NOT NULL);

DROP TABLE LOB_TABLE;

—--prompt All done. Please alert the instructor of any errors other than ORA-00942.
set echo on pause on

© SunGard 2004-2007 Introduction to Oracle
Page 311

Section P: Related Files

Lesson: swriden.ctl

< Jump ta 100
Listing
LOAD DATA

INFILE "swriden.dat”

BADFILE "swriden.bad*®

DISCARDFILE "swriden.dsc*

APPEND

INTO TABLE swriden

FIELDS TERMINATED BY *," OPTIONALLY ENCLOSED BY ="'~
TRAILING NULLCOLS

(swriden_pidm SEQUENCE(MAX, 1),
swriden_activity_date SYSDATE,

swriden_id CHAR,

swriden_last _name CHAR,

swriden_first_name CHAR,

swriden_mi CHAR,

swriden_change_ind CHAR)

© SunGard 2004-2007 Introduction to Oracle

Page 312

Section P: Related Files

Lesson: swriden.dat

Listing
443223344 ,Robertson,Robert,R,
433256789, Thompson,Thomas, T, |
433234566, Thompson,Thomas, T,
66755334533, Appleton,Apple,A,N
667553345, Thompson,Apple,A,
657890007 ,Jackson,Steve, D,
543678890,Hedges ,Mike,R
453678923 ,Palm,Royal ,Z

© SunGard 2004-2007 Introduction to Oracle
Page 313

Release Date

«f Jump ta T0C

This workbook was last updated on 10/22/2007.

	Section A: Introduction
	Overview
	Course Overview

	Section B: Introduction to Oracle SQL and SQL*Plus
	Overview
	SQL Statements
	Oracle’s Relational Database
	Login
	SQL Buffer
	Tables
	Table Relationships
	Naming Conventions
	Columns
	Data Dictionary
	DUAL
	SQL*Plus Formatting
	Formatting Columns
	Listing and Resetting Column Display Attributes
	Suppressing and Restoring Column Display Attributes
	Linesize and Pagesize
	Setting output to Pause
	Self Check

	Section C: Introduction to the Query
	Overview
	Select Statements
	Selecting Multiple Columns
	Selecting a Literal
	DISTINCT Clause
	Selecting All Columns
	Column Heading Aliases
	Pseudo-columns
	Self Check

	Section D: Conditions and Operators
	Overview
	Conditions
	The WHERE Clause
	Comparison Operators
	Logical Operators
	BETWEEN Operator
	In Operator
	LIKE Operator
	NOT Operator
	Precedence Rules
	Parameters
	Self Check

	Section E: Arithmetic Expressions and Functions
	Overview
	Arithmetic Expressions
	Order of Evaluation
	Numeric Functions
	Character Functions
	Regular Expressions
	Format Models
	Date Functions
	Conversion Functions
	Conversion Functions
	Group Functions
	Self Check

	Section F: Nesting Functions
	Overview
	Nesting CASE
	Nesting COUNT
	Nesting DECODE
	Nesting SUBSTR
	Nesting SUM
	Self Check

	Section G: Clauses
	Overview
	The WHERE Clause
	ORDER BY
	Ordering by Position
	GROUP BY
	HAVING
	Self Check

	Section H: Advanced Queries
	Overview
	Joins
	Joins - Union, Union All, Intersect, Minus
	Subqueries
	Subqueries Returning Multiple Values
	Nested Subqueries
	Correlated Subqueries
	Dynamic SQL
	Self Check

	Section I: Insert, Update and Delete
	Overview
	Insert
	Multi-table Insert
	Insert – Default in Values
	Update
	Merge
	Delete
	Transactions
	Self Check

	Section J: Creating and Maintaining Tables and Indexes
	Overview
	Schemas
	Data Definition Language Commands
	Creating a Table
	Altering a Table
	Adding and Removing Columns
	Constraints
	Referential Integrity Constraints
	Truncate
	Indexes
	Concatenated Indexes
	Self Check

	Section K: Creating and Maintaining Other Database Objects
	Overview
	Creating Views
	Synonyms
	Sequences
	Security
	Self Check

	Section L: SQL*Loader & External Tables
	Overview
	Required Input Files
	SQL*Loader Syntax
	Generating Data
	Handling Blanks in Records
	SQL*Loader Examples
	Invoking SQL*Loader
	SQL*Loader Process
	External Tables
	Self Check

	Section M: SQL*Plus Reporting
	Overview
	Example Query
	Suppressing Duplicate Values in Break Columns
	Inserting Space When a Break Column's Value Changes
	Using Multiple Spacing Techniques
	Listing and Removing Break Definitions
	Computing Summary Lines When a Break Column's Value Changes
	Computing Summary Lines at the End of the Report
	Defining Page Titles and Dimensions
	Displaying Column Values in Titles
	Storing and Printing Query Results
	Saving the Commands to a File
	HTML Reports
	Self Check

	Section N: Answer Key for Self Check Exercises
	Overview
	Section B – Answer Key
	Section C – Answer Key
	Section D – Answer Key
	Section E– Answer Key
	Section F – Answer Key
	Section G – Answer Key
	Section H – Answer Key
	Section I – Answer Key
	Section J – Answer Key
	Section K – Answer Key
	Section L – Answer Key
	Section L – Answer Key

	Section O: Table Descriptions and Contents
	Overview
	SWRADDR
	SWBPERS
	SWRIDEN
	SWRREGS
	SWRSTDN
	SWRTEST
	SWVCRSE
	SWVSTDN
	SWVTERM
	TWRACCD
	TWVDETC

	Section P: Related Files
	Overview
	Create_exercise_tables.sql
	swriden.ctl
	swriden.dat

