

Banner Oracle
PL/SQL and Database Objects Training Workbook

January 2007
Using Oracle for Banner 7

What can we help you achieve? HIGHER EDUCATION

Confidential Business Information

This documentation is proprietary information of SunGard Higher Education and is not to be copied, reproduced, lent or disposed of,
nor used for any purpose other than that for which it is specifically provided without the written permission of SunGard Higher
Education.

Prepared By: SunGard Higher Education

4 Country View Road
Malvern, Pennsylvania 19355
United States of America

© 2004-2008 SunGard. All rights reserved. The unauthorized possession, use, reproduction, distribution, display or disclosure of this
material or the information contained herein is prohibited.

In preparing and providing this publication, SunGard Higher Education is not rendering legal, accounting, or other similar professional
services. SunGard Higher Education makes no claims that an institution's use of this publication or the software for which it is provided
will insure compliance with applicable federal or state laws, rules, or regulations. Each organization should seek legal, accounting and
other similar professional services from competent providers of the organization's own choosing.

Without limitation, SunGard, the SunGard logo, Banner, Campus Pipeline, Luminis, PowerCAMPUS, Matrix, and Plus are trademarks or
registered trademarks of SunGard Data Systems Inc. or its subsidiaries in the U.S. and other countries. Third-party names and marks
referenced herein are trademarks or registered trademarks of their respective owners.

Table of Contents

Section A: Introduction ..9
Overview ..9

Section B: PL/SQL Basic Structure ..10
Overview ..10
PL/SQL Overview..11
PL/SQL Block Structure ..12
Sections of the PL/SQL Block ...13
Web Enabled Model ...14
Conventions..15
Running Anonymous PL/SQL ...17
PL/SQL Versions/History ..19
Self Check ..20

Section C: Declaring Variables..21
Overview ..21
Declaring Variables..22
Built-in Datatypes...23
Referencing Database Objects..25
Scoping Rules...26
Self Check ..28

Section D: SQL Statements within PL/SQL...29
Overview ..29
Comments...30
Data Manipulation..31
Retrieving Data...33
Process Transactions ..34
Self Check ..35

Section E: Conditional, Iterative, Sequential Control...36
Overview ..36
Conditional Control ..37
Nested IF Statements..41
Iterative Control ...42
Sequential Control ..45
View Information on Screen ..48
Self Check ..50

Table of Contents (Continued)

Section F: Handle PL/SQL Errors ..52
Overview ..52
Exception Handling..53
Named System Exceptions...54
Named Programmer-Defined Exceptions ..56
Exception Propagation ...58
Unnamed System Exceptions...62
SQLCODE and SQLERRM...63
Success or Failure?...65
Forcing Program Abort ..66
Debugging ..67
Self Check ..68

Section G: Cursors, Records, and Tables ...70
Overview ..70
Cursor Basics..71
Declare Cursors ..72
Open Cursors..73
Fetch from Cursors...74
Close Cursors ...75
Cursor Attributes ..76
Reference the Current Row ..78
Cursor FOR Loops ...79
Conceptual Cursor Loop Model ...80
Statements Associated with Implicit Cursors...81
PL/SQL Records...83
Tables..... ..86
Tables vs. Arrays..87
Tables of Records...88
Table Attributes..89
Self Check ..95

Table of Contents (Continued)

Section H: Procedures and Functions ...101
Overview ..101
Modular Code...102
Layers of Oracle Programming ..103
Procedure..104
Parameters ..105
Executing Procedures ...107
Executing Procedures Example..108
Positional vs. Named Notation...110
Functions ..111
Calling a Function ..114
What Can Functions Do For You? ...115
Example Function...116
Handling Compilation Errors ...118
Locate Objects in the Database ..121
Remove Subprograms ..124
Self Check ..125

Section I: Packages ...129
Overview ..129
Benefits of Packages ..130
Package Structure ...132
Reference Package Elements and Cursors ...135
Unqualified Package Elements...136
Access to Package Elements ..137
Synchronize the Specification and the Body..141
Public vs. Private Data Elements ...142
Do You Really Need the Package Body?...146
Overloading Packages ..147
Recommendations for Using Packages ..148
Security...149
Self Check ..150

Table of Contents (Continued)

Section J: Built-In Packages ..151
Overview ..151
Oracle Built-In Packages..152
DBMS_LOB...154
DBMS_RANDOM...162
DBMS_OUTPUT...165
DBMS_SESSION ..167
SYS_CONTEXT ..170
DBMS_SCHEDULER ...171
Self Check ..181

Section K: Database Triggers ..184
Overview ..184
Trigger Events ..185
Old and New in Row-Level Triggers ...187
Restrictions on Triggers ...188
Autonomous Transactions..190
The WHEN Clause...192
Viewing Stored Trigger Code ..193
Viewing Stored Trigger Errors...195
Remove Triggers ..197
Order of Trigger Firing...198
Instead-of Triggers ...201
Self Check ..202

Section L: File Input/Output..204
Overview ..204
Input/Output Environments..205
Operating System Security...207
UTL_FILE Package ...208
Open and Close Files..209
File Output..211
File Input ..212
Error Handling..213
Self Check ..215

Table of Contents (Continued)

Section M: Communicating Across Sessions..220
Overview ..220
DBMS_PIPE ..221
Public vs. Private Pipes ..222
DBMS_PIPE - Pack and Send...223
DBMS_PIPE – Receive and Unpack ...224
DBMS_PIPE - Example..225
Remove a Pipe..226
Remove A Pipe's Contents ...227
DBMS_ALERT..228
Sending Alerts ..229
Receiving Alerts ...230
Unregister for an Alert ...235
DBMS_PIPE vs. DBMS_ALERT..236
Self Check ..237

Section N: Dynamic SQL..239
Overview ..239
Dynamic SQL Steps ...240
Fetching Rows with Dynamic SQL..244
What are all those Quotes? ...245
Execute Immediate ...246
Self Check ..248

Section O: Optimizing Code ..250
Overview ..250
Incentives for Tuning ...251
When to Tune SQL...252
Aspects of SQL Tuning..253
How Oracle Processes a SQL Statement..254
The System Global Area ..255
The SQL Optimizer ..256
Rule-Based vs. Cost-Based Optimization ..257
Rule-Based Optimizer Tuning..258
Cost Based Optimizer Tuning ..259
Explain Plan ...260
Autotrace ..263
Explain in SQL Developer ...265
What to Watch..266
Elapsed Times ..267
Self Check ..268

Table of Contents (Continued)

Section P: Appendix..270
Overview ..270
Table Relationships ..271
Banner APIs ...272
Calling APIs ...273

Section Q: Self Check - Answer Key...274
Section B ..274
Section C ..275
Section D ..276
Section E...277
Section F...279
Section G ..281
Section H ..287
Section I..291
Section J. ..294
Section K ..298
Section L...301
Section M ...307
Section N ..310
Section O ..312

© SunGard 2004-2005 PL/SQL and Database Objects

Page 9

Section A: Introduction

Lesson: Overview

Workbook goal
SQL (structured query language) is the core language used to interact with an Oracle database.
PL/SQL, or the procedural language of SQL, can be considered the second layer of language
because it allows the use of conditional statements.

Introduction to Oracle and SQL acquainted you with the basics of SQL. This course will expand
upon this base by working introducing the procedural concepts of SQL including stored
procedures, functions, packages, triggers, and code optimization.

Participants in this course will be able to

• write statements to obtain information from the database
• write statements to generate reports
• manipulate data and process transactions
• write programs in which SQL statements are enclosed within procedural statements (such

as IF statements)
• create program units, such as procedures and functions, which can be stored in the

database.

Intended audience
PL/SQL is used for all types of database activities by many types of users. However, in order for
attendees to receive the optimum benefit of this training, Sungard Higher Education recommends
that prospective students come from one of the following groups:

• System administrators
• Database administrators
• Security administrators
• Application programmers
• Decision support system personnel
• End users who have extensive contact with the database

Prerequisites
To complete this workbook, you should have:

• completed the Education Practices computer-based training (CBT) tutorial “Banner 7
Fundamentals,” or have equivalent experience navigating in the Banner system

• completed the Introduction to Oracle training workbook

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 10

Section B: PL/SQL Basic Structure

Lesson: Overview

Introduction
This section provides an overview of the basic concepts of PL/SQL.

Objectives
This section will examine the following:

• The basic structure of PL/SQL
• How PL/SQL interprets and executes statements

Section contents
Overview ..10
PL/SQL Overview..11
PL/SQL Block Structure ..12
Sections of the PL/SQL Block ...13
Web Enabled Model ...14
Conventions..15
Running Anonymous PL/SQL ...17
PL/SQL Versions/History ..19
Self Check.. 20

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 11

Section B: PL/SQL Basic Structure

Lesson: PL/SQL Overview

What is PL/SQL?
PL/SQL is Oracle's procedural extension to industry-standard SQL. With PL/SQL, you can use
SQL statements to manipulate Oracle data and flow-of-control statements to process the data.
You can also declare constants and variables, define procedures and functions, and trap runtime
errors. Thus, PL/SQL combines the data manipulating power of SQL with the data processing
power of procedural languages

Example
PL/SQL allows you to enclose your SQL statements with conditions.

/*
This procedure will either insert or delete a record from the SWRIDEN
table, depending on the parameter of
action_in.
*/
CREATE OR REPLACE PROCEDURE maintain_pidms
(pi_action IN VARCHAR2,
 pi_pidm IN NUMBER :=NULL,
 pi_id IN VARCHAR2,
 pi_last_name IN VARCHAR2 := NULL,
 pi_first_name IN VARCHAR2 := NULL,
 pi_mi IN VARCHAR2 := NULL)
IS
BEGIN
 IF pi_action = 'DELETE' THEN
 DELETE FROM swriden
 WHERE swriden_pidm = pi_pidm;
 ELSIF pi_action = 'INSERT' THEN
 INSERT INTO swriden
 (swriden_pidm, swriden_id, swriden_last_name,

 swriden_first_name, swriden_mi,
 swriden_activity_date
)
 VALUES (pi_pidm, pi_id, pi_last_name,
 pi_first_name, pi_mi, SYSDATE
);
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 12

Section B: PL/SQL Basic Structure

Lesson: PL/SQL Block Structure

Block structure
PL/SQL is a block-structured language. That is, the basic units (procedures, functions, and
anonymous blocks) that make up a PL/SQL program are logical blocks, which can contain any
number of nested sub-blocks. Typically, each logical block corresponds to a problem or
subproblem to be solved A block (or sub-block) lets you group logically related declarations and
statements

A PL/SQL block has three parts: a declarative part, an executable part, and an exception-
handling part. Only the executable part is required

Diagram

Named vs Anonymous
There are named and anonymous PL/SQL blocks. A named block is a function, procedure,
package, or trigger that is given a formal name and the associated PL/SQL code is stored in the
database for use by other SQL and PL/SQL processes. These are sometimes referred to as
'stored' PL/SQL

An anonymous block is normally either written ad-hoc or stored in an SQL file for execution via
running the SQL file. It cannot be called by SQL commands or other stored (named) PL/SQL
blocks.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 13

Section B: PL/SQL Basic Structure

Lesson: Sections of the PL/SQL Block

Header
For named blocks only, such as procedures, functions, and packages, the Header section assigns
a label to a given block and specifies the type of block to be defined.

Declaration
The declaration section is the part of the block that declares variables, cursors, and sub-blocks
that are referenced in the execution and exception sections.

Execution
This is the part of the PL/SQL block containing the executable statements which can include
standard SQL statements as well as procedural or looping statements.

Exception
The section handles exceptions to normal processing (warnings and error conditions).

Notes
• Blocks can contain sub-blocks
• Executable statements end with a semi-colon
• Declared objects exist within a certain scope (discussed in the following section)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 14

Section B: PL/SQL Basic Structure

Lesson: Web Enabled Model

Diagram

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 15

Section B: PL/SQL Basic Structure

Lesson: Conventions

Case Restrictions
As with SQL, there are no case restrictions when writing PL/SQL. Code can be written in upper,
lower, or mixed. However, common conventions have key words or commands capitalized with
other statements or variables in lower case.

When referring to any variable or object in PL/SQL they are case insensitive. Even if a variable
is defined in upper case it can be referred to later in lower or mixed case.

 DECLARE
 lv_my_numb number(10,2);
 BEGIN
 SELECT count(*) INTO lv_my_numb
 FROM spriden;
 END;

Naming Standards
It is a good idea to establish naming standards early in PL/SQL development. This makes the
code easier to read and maintain, especially if the author is not the person making changes to an
existing program.

Common naming standards include prefix assignments for parameters and variables as well as
names for stored PL/SQL objects. Common prefixes for stored objects include PKG_ for stored
packages, SP_ or P_ for stored procedures, and F_ for stored functions.

In this course we will strive to maintain the following conventions:
 Parameters:
 pi_ Parameter IN
 po_ Parameter OUT
 pio_ Parameter IN/OUT

 Variables:
 lv_ Locally declared variable

gv_ Globally declared variable
 vi_ Parameter declared as incoming and assigned to a local variable
 vo_ Parameter declared as outgoing and assigned to a local variable
 vio_ Parameter declared as in or out and assigned to a local variable

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 16

Section B: PL/SQL Basic Structure

Lesson: Conventions (continued)

Formatting
It is a good practice to get into the habit of formatting your PL/SQL from the start. Formatting,
like naming conventions, increases readability and makes code easier to maintain.

Line up the main sections of the code and indent statements within (3-5 spaces is common). For
loops or sub-blocks, continue to indent. Lining up your SQL statements also improves
readability.

DECLARE
 lv_count number(2);
BEGIN
 SELECT ……
 INTO ……
 FROM ……
 WHERE ……

 BEGIN
 LOOP
 lv_count := lv_count + 1;
 EXIT when lv_count > 10;
 END LOOP;
 END;
EXCEPTION
 WHEN no_data_found THEN

END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 17

Section B: PL/SQL Basic Structure

Lesson: Running Anonymous PL/SQL

Execute PL/SQL
To execute your anonymous PL/SQL block in SQL*Plus you must put a forward slash (/) on the
line after the last END; statement.

SQL> DECLARE
 2 lv_my_numb number(10,2);
 3 BEGIN
 4 SELECT count(*) INTO lv_my_numb
 5 FROM swriden;
 6 END;
 7 /
PL/SQL procedure successfully completed.

SQL>

If you make a typographical error or syntactical error in your PL/SQL you must still execute the
block to be able to go back and make corrections.

Errors
Once you receive an error for syntactical or typographical errors, you can correct your PL/SQL
through the line editor or by using the EDIT command in SQL*Plus.

 SQL> DECLARE
 2 lv_my_numb number(10,2);
 3 BEGIN
 4 SELECT count(*) INTO lv_my_numb
 5 FROM swridez;
 6* END;
SQL> /
 FROM swridez;
 *
ERROR at line 5:
ORA-06550: line 5, column 10:
PL/SQL: ORA-00942: table or view does not exist
ORA-06550: line 4, column 3:
PL/SQL: SQL Statement ignored

NOTE: Oracle will attempt to point out where the error occurred but if it the exact location is
not obvious to the PL/SQL compiler it may give an ambiguous error.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 18

Section B: PL/SQL Basic Structure

Lesson: Running Anonymous PL/SQL
(continued)

Running PL/SQL from SQL Developer
SQL Developer is a new tool from Oracle that will one day replace SQL*Plus. While most of
this course will focus on using SQL*Plus you may also use SQL Developer. Differences are
pointed out where appropriate.

 Use this button to run a standard SQL statement. The results will appear in the Results tab

 Use this button to run PL/SQL. The results will appear in the Script Output tab

 This button will commit the current transaction.

This button will roll back the current transaction.

 This button allows you to see a history of SQL statements you have issued

 This button erases the current window whether it is the SQL window or the Script Results
window

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 19

Section B: PL/SQL Basic Structure

Lesson: PL/SQL Versions/History

VERSION /
RELEASE

CHARACTERISTICS

Version 1.0
(Oracle 6)

First available in SQL*Plus as a batch processing. PL/SQL was then implemented
within SQL*Forms Version 3, the predecessor of Oracle Forms.

Version 1.1 Available only in the Oracle Development tools. Supports client-side packages
and allows client-side programs to execute stored code transparently.

Version 2.0
(Oracle 7.0)

Adds support for stored procedures, functions, packages, programmer-defined
records, PL/SQL tables, and many package extensions, including
DBMS_OUTPUT and DBMS_PIPE.

Version 2.1
(Oracle 7.1)

Supports user-defined subtype, enables stored functions in SQL statements, and
offers dynamic SQL with the DBMS_SQL package. DDL statements can now be
executed from within PL/SQL.

Version 2.2
(Oracle 7.2)

Implements binary “wrapper” for PL/SQL programs to protect source code,
supports cursor variables for embedded PL/SQL environments such as Pro*C,
and makes available database-driven job scheduling with DBMS_JOB package.

Version 2.3
(Oracle 7.3)

Enhances functionality of PL/SQL tables, offers improved remote dependency
management, adds file I/O capabilities to PL/SQL, and completes the
implementation of cursor variables.

Version 8.0
(Oracle 8.0)

Object types and methods were enhanced. Collection types – nested tables and
varrays were added. Advanced queuing option, support for External procedures
and LOB enhancements.

Version 9.0.1
(Oracle 9.0)

Enhanced integration of SQL and PL/SQL parsers. Added CASE statements and
expressions; merge statement; Type Evolution; new Date/Time types; and Native
Compilation of PL/SQL code. Improved Globalization and National language
Support. Enhanced table functions and Cursor expressions. Allows multilevel
collections. Better integration of LOB Datatypes.

Version 9.2
(Oracle 9.2)

Enhanced Insert/Update/Select of entire PL/SQL records,. Added Associative
arrays and User-defined constructors. Enhanced UTL_FILE with new functions.
Added treat, is of, and only function for data types.

Version 10.1
(Oracle 10.1)

Performance improvements include better integer performance, reuse of
expression values, simplification of branching code, better performance for some
library calls, and elimination of unreachable code. Native compilation easier and
more integrated; fewer initialization parameters, less compiler configuration,
object code stored in the database, and compatibility with Oracle Real
Application Clusters. The FORALL statement handles associative arrays and
nested tables with deleted elements. New functions SCN_TO_TIMESTAMP and
TIMESTAMP_TO_SCN allow you translate between a date/time, and the
system change number that represents the database state at a point in time.

Version 10.2
(Oracle 10.2)

Offers Conditional Compilation feature, which enables you to selectively include
code depending on the values of the conditions evaluated during compilation.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 20

Section B: PL/SQL Basic Structure

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self check activity.

Exercise 1
What are the three main parts of a PL/SQL block?

Exercise 2
Describe an anonymous block.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 21

Section C: Declaring Variables

Lesson: Overview

Introduction
Communication with the database takes place through variables in the PL/SQL block. Variables
are memory locations, which can store data values. As the program runs, the contents of
variables can and do change. Information for the database can be assigned to a variable, or the
contents of a variable can be inserted into the database. Every variable has a specific type as
well, which describes what kind of information and be stored in it.

Objectives
This section will examine the following:

• Legal vs. Illegal variables
• Understanding the Scope and visibility of variables

Section contents
Overview ..21
Declaring Variables..22
Built-in Datatypes...23
Referencing Database Objects..25
Scoping Rules...26
Self Check ..28

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 22

Section C: Declaring Variables

Lesson: Declaring Variables

Syntax
Identifier [CONSTANT] datatype [NOT NULL] [:= plsql_expression];

Examples

Number
lv_pidm NUMBER;
lv_amount NUMBER(7,2);
lv_tax CONSTANT DECIMAL := .06;
lv_fee NUMBER(7,2) := 0;

CHAR/ VARCHAR2
lv_last_name VARCHAR2(30);
lv_institution VARCHAR2(20) NOT NULL := 'ABC University';

DATE
lv_application_date DATE;
lv_today DATE := SYSDATE;
lv_bill_date DATE := TO_DATE('10/10/2006','MM/DD/YYYY');

BOOLEAN
lv_amount_paid BOOLEAN;
lv_registered BOOLEAN NOT NULL := FALSE;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 23

Section C: Declaring Variables

Lesson: Built-in Datatypes

Scalar Types

CATEGORY DATATYPE
Number BINARY_INTEGER
 DEC
 DECIMAL
 DOUBLE PRECISION
 FLOAT
 INT
 INTEGER
 NATURAL
 NATURALN
 NUMBER
 NUMERIC
 PLS_INTEGER
 POSITIVE
 POSITIVEN
 REAL
 SIGNTYPE
 SMALLINT
Character CHAR
 CHARACTER
 LONG
 LONG_RAW
 NCHAR
 NVARCHAR2
 RAW
 VARCHAR (for backward compatibility only)
 VARCHAR2
 MLSLABEL
Boolean BOOLEAN
Date-time DATE
 INTERVAL DAY TO SECOND
 INTERVAL YEAR TO MONTH
 TIMESTAMP
 TIMESTAMP WITH LOCAL TIME ZONE
 TIMESTAMP WITH TIME ZONE

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 24

Section C: Declaring Variables

Lesson: Built-in Datatypes (Continued)

Composite Types

CATEGORY DATATYPE
 RECORD
 TABLE
 VARRAY

Reference Types
CATEGORY DATATYPE

 REF CURSOR
 REF object_type

LOB Types
CATEGORY DATATYPE

 BFILE
 BLOB
 CLOB
 NCLOB

Special Types
CATEGORY DATATYPE

 ROWID
 UROWID

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 25

Section C: Declaring Variables

Lesson: Referencing Database Objects

Association
You can associate PL/SQL objects with certain attributes from another object. It can either be
another declared variable or a database item.

%TYPE
The variable takes on the data type of the referenced variable or database column.

DECLARE
 lv_amount NUMBER(7,2);
 lv_balance twraccd.twraccd_amount%TYPE;
 lv_internal_id swriden.swriden_pidm%TYPE;

%ROWTYPE
ROWTYPE creates a record type with a field for each column in the specified table.

DECLARE
 lv_swriden_row swriden%ROWTYPE;

When creating variables that are to store values selected from tables it is good practice to use the
%TYPE or %ROWTYPE assignment so that if the column or table changes in the database, the
variable in the PL/SQL program unit also takes on that change. Without this assignment, each
PL/SQL program unit referencing that table or column would need to be examined to determine
if the change to the table affected how that code processes the data and if the code needed to be
changed to reflect the table change.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 26

Section C: Declaring Variables

Lesson: Scoping Rules

Resolving references
References to a variable are resolved according to its scope and visibility.

Scope
The region of a program unit from which you can reference the identifier.

Visibility
An identifier is visible only in the regions from which you can reference the identifier using an
unqualified name.

Rules
Identifiers declared in a PL/SQL block are considered local to that block and global to all its sub-
blocks.

If a global identifier is redefined in a sub-block, then both identifiers remain in scope. Within
the sub-block, however, only the local identifier is visible because you must use a qualified name
to reference the global identifier.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 27

Section C: Declaring Variables

Lesson: Scoping Rules (Continued)

Example

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 28

Section C: Declaring Variables

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
How can you create a variable that has the same characteristics as a column in the database?

Exercise 2
Mark the following as legal or illegal definitions:

lv_Pidm NUMBER; (Legal or Illegal?)
lv_Pidm NUMBER(8) := null; (Legal or Illegal?)
lv_PIDM NUMBER(8) := 0; (Legal or Illegal?)
lv_PIDM NUMBER(8) NOT NULL; (Legal or Illegal?)
lv_name varchar2; (Legal or Illegal?)
lv_state char; (Legal or Illegal?)
lv_today date := '01/01/2003'; (Legal or Illegal?)
lv_state varchar2(4) := 'FLORIDA'; (Legal or Illegal?)
update varchar2(7) := 'FLORIDA'; (Legal or Illegal?)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 29

Section D: SQL Statements within PL/SQL

Lesson: Overview

Introduction
SQL statements within PL/SQL allow us to manipulate data in the database.

Objectives
Upon completion of this section, each attendee will be able to

• use SQL statements within PL/SQL
• identify SQL functions supported by PL/SQL

Section contents
Overview ..29
Comments...30
Data Manipulation..31
Retrieving Data...33
Process Transactions ..34
Self Check ..35

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 30

Section D: SQL Statements within PL/SQL

Lesson: Comments

Comments

Comments can be added to any PL/SQL code to help explain the actions being undertaken. It is
a good idea to put in many comments throughout your program to provide documentation and a
reference if some part of the code needs to be changed at a later date.

A single line can be commented using two dashes (--) at the start of the line.

Entire sections of code or multi-line comments can be achieved through block comment
characters /* to start a block of comments and */ to end a block of comments.

BEGIN
-- This section of code is for….
 SELECT ……
 FROM…..

/* This section of code actually manipulates data
 It was put in place by John Q. Codewriter
 To accommodate changes made for Banner upgrade to version 7.3
*/
 UPDATE …….
 SET ……
 WHERE ………;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 31

Section D: SQL Statements within PL/SQL

Lesson: Data Manipulation

Versions
All PL/SQL versions support SQL data manipulation allowing you to modify data in the
database. These statements include INSERT, UPDATE, and DELETE which are often referred
to as DML statements.

INSERT
/*
Inserts a record into the swbpers table
*/
DECLARE
 pi_pidm NUMBER(8) := 1021;
 pi_ssn VARCHAR2(9) := '987654321';
 pi_birth_date DATE := TO_DATE('10-FEB-1973','DD-MON-YYYY');
 pi_mrtl_code VARCHAR2(1) := 'S';
 pi_sex VARCHAR2(1) := 'F';
 pi_confid_ind VARCHAR2(1) := NULL;
BEGIN
 INSERT INTO swbpers
 (swbpers_pidm, swbpers_ssn, swbpers_birth_date,
 swbpers_mrtl_code, swbpers_sex,
 swbpers_confid_ind, swbpers_activity_date
)
 VALUES (pi_pidm, pi_ssn, pi_birth_date,
 pi_mrtl_code, sex_in,

 pi_confid_ind, SYSDATE
);
END;

 /

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 32

Section D: SQL Statements within PL/SQL

Lesson: Data Manipulation (Continued)

UPDATE
/*
Updates the old zip code with the new zip code.
*/
DECLARE
 lv_zip_old VARCHAR2(10) := '19380';
 lv_zip_new VARCHAR2(10) := '19382';

BEGIN
 UPDATE swraddr
 SET swraddr_zip = lv_zip_new
 WHERE swraddr_zip = lv_zip_old;
END;

DELETE
/*
Deletes all rows from the account table where
the term matches '200601'
*/
DECLARE
 lv_term VARCHAR2(6) := '200601';
BEGIN
 DELETE FROM twraccd
 WHERE twraccd_term_code = lv_term;
END;

/

DDL
Until PL/SQL version 2.0, Data Definition Language (DDL) statements were not allowed. This
includes creating, altering, and dropping objects from the database. Such statements are made
possible through the built-in package DBMS_DDL. They can also be issued through a new
convention introduced in Oracle 8i called EXECUTE IMMEDIATE. Both options will be
discussed in later sections.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 33

Section D: SQL Statements within PL/SQL

Lesson: Retrieving Data

SELECT INTO
A SELECT INTO statement is the only DML that returns data. You need to provide the host
variable names in which this data is to be stored, specified in the INTO clause. A variable for
each column being selected must be declared in the declaration section.

A SELECT INTO statement must return only one row. If zero or multiple rows are returned, an
error condition occurs. If you would like to return multiple rows, use cursors which are
discussed later.

Syntax
SELECT col1, col2, ...
 INTO var1, var2 ...
 FROM table_name
 WHERE ...

Example
/*
Retrieves the last and first name for PIDM 12340 into the host
variables.
*/
DECLARE
 lv_last_name swriden.swriden_last_name%TYPE;
 lv_first_name swriden.swriden_first_name%TYPE;
BEGIN
 SELECT swriden_last_name, swriden_first_name
 INTO lv_last_name, lv_first_name
 FROM swriden
 WHERE swriden_pidm = 12340
 AND swriden_change_ind IS NULL;

 -- data manipulation

END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 34

Section D: SQL Statements within PL/SQL

Lesson: Process Transactions

Transactions
A transaction is a set of manipulation statements between COMMITs or saving of changes.
Many DML statements can be issued in a PL/SQL block. To segregate each change or section of
changes a marker called a SAVEPOINT can be issued. SAVEPOINTS allow certain parts of the
transaction to be undone if some error or event occurs.

SAVEPOINT
SAVEPOINT < marker name >

ROLLBACK TO
ROLLBACK [WORK] TO [SAVEPOINT] < marker name >

Sample
BEGIN

INSERT INTO swriden (swriden_pidm, swriden_id, swriden_last_name,
 Swriden_first_name, swriden_activity_date)

 VALUES (pidm_sequence.NEXTVAL, '123456789',
 'Smith', 'John', SYSDATE);
 SAVEPOINT A;

 SAVEPOINT B;

 ROLLBACK TO SAVEPOINT A;
 COMMIT;
END;

/

SAVEPOINT Naming
SAVEPOINTs can have any name – as small as a single character or an entire word or series of
words connected by underscores.

A SAVEPOINT name can be re-used but when you re-use a savepoint name it moves the
savepoint to the new spot and will not allow the transaction to be undone back to the original
spot.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 35

Section D: SQL Statements within PL/SQL

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Write a PL/SQL block to insert a row about you into SWRIDEN. The values for the insert must
be declared in a declaration section. (Either prompt for the values using the &variable
convention or hard code the values in the declaration section.) Check to make sure your row was
inserted.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 36

Section E: Conditional, Iterative, Sequential
Control

Lesson: Overview

Introduction
One of the powers of PL/SQL is its ability to provide conditional, iterative and sequential control
of statements.

Objectives
Upon completion of this section, each attendee will be able to

• write a PL/SQL procedures to conditionally execute SQL
• identify three uses for PL/SQL statements
• identify four types of loops
• write a PL/SQL procedure using a loop structure.

Section contents
Overview ..36
Conditional Control ..37
Nested IF Statements..41
Iterative Control ...42
Sequential Control ..45
View Information on Screen ..48
Self Check ..50

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 37

Section E: Conditional, Iterative, Sequential
Control

Lesson: Conditional Control

IF-THEN
Use the IF-THEN construct when you want to execute one or more statements if the condition
yields TRUE.

IF <condition>
THEN
 <TRUE sequence of statements>
END IF;

IF average_gpa > 3.0 THEN
 student_status := 'HONORS';
END IF;

IF-THEN-ELSE
Use the IF-THEN-ELSE statement when you want to choose between two mutually exclusive
actions.

IF <condition>
THEN
 <TRUE sequence of statements>
ELSE
 <FALSE or NULL sequence of statements>
END IF;

IF average >= .70
THEN
 student_status := 'PASSED';
ELSE
 student_status := 'FAILED';
END IF;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 38

Section E: Conditional, Iterative, Sequential
Control

Lesson: Conditional Control (Continued)

IF-THEN-ELSIF
Use the IF-THEN-ELSIF statement when you want to select an action from several mutually
exclusive alternatives.

IF <condition>
THEN
 <TRUE sequence of statements>
ELSIF <condition>
THEN
 <TRUE sequence of statements>
ELSE
 <FALSE or NULL sequence of statements>
END IF;

/* This block determines whether the institution size is small,
medium, or large based on the number of records in the SWRIDEN
table. */

DECLARE
 lv_num_students NUMBER(10);
 lv_institution_size VARCHAR2(7);
BEGIN
 SELECT COUNT(*)
 INTO lv_num_students
 FROM swriden
 WHERE swriden_change_ind IS NULL;
 IF lv_num_students < 5000 THEN
 lv_institution_size := 'Small';
 ELSIF lv_num_students BETWEEN 5000 AND 14999 THEN
 lv_institution_size := 'Medium';
 ELSE
 lv_institution_size := 'Large';
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 39

Section E: Conditional, Iterative, Sequential
Control

Lesson: Conditional Control (Continued)

CASE
In Oracle 9i, you can also use the CASE statement when you want to select an action from
several mutually exclusive equality tests.

Equality Case
CASE variable
WHEN value1 THEN
 <value1 sequence of statements>;
WHEN value2 THEN
 <value2 sequence of statements>;
WHEN value3 THEN
 <value3 sequence of statements>;
. . .
ELSE
 <else sequence of statements>;
END CASE;

/* This block determines msg value based on column sex. */

DECLARE
 lv_sex SWBPERS.swbpers_sex%TYPE;
 lv_msg varchar2(10);
BEGIN
 SELECT swbpers_sex
 INTO lv_SEX
 FROM SWBPERS
 WHERE swbpers_pidm = '12345';
 CASE lv_sex
 WHEN 'M' THEN lv_msg := 'Male';
 WHEN 'F' THEN lv_msg := 'Female';
 ELSE lv_msg := 'Unknown';
 END CASE;
 . . .
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 40

Section E: Conditional, Iterative, Sequential
Control

Lesson: Conditional Control (Continued)

Inequality Case
The CASE statement can also be used to test for inequality as well as equality. The syntax is
slightly different as the variable does not appear after the CASE statement but instead as part of
the WHEN statements.

CASE
WHEN variable operator value1(s) THEN
 <value1 sequence of statements>;
WHEN variable operator value2(s) THEN
 <value2 sequence of statements>;
WHEN variable operator value3(s) THEN
 <value3 sequence of statements>;
. . .
ELSE
 <else sequence of statements>;
END CASE;

Operator can be options like >, <, >=, <=, <>, LIKE, NOT LIKE, BETWEEN, IN, NOT IN, etc.

Example
DECLARE
 lv_count NUMBER;
 lv_size VARCHAR2(30);
BEGIN
 SELECT COUNT(*)
 INTO lv_count
 FROM swbpers;
 CASE
 WHEN lv_count < 500 THEN
 lv_size := 'SMALL';
 WHEN lv_count BETWEEN 500 AND 999 THEN
 lv_size := 'MEDIUM';
 WHEN lv_count > 999 THEN
 lv_size := 'LARGE';
 ELSE
 lv_size := 'UNKNOWN';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(lv_size);
END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 41

Section E: Conditional, Iterative, Sequential
Control

Lesson: Nested IF Statements

Nesting
You can nest any IF statement within any other IF statement.

/* If the combined score is greater than 1200, the student's scores
are evaluated further. If the student's verbal score is greater
than 600, a record is inserted into HIGH_VERBAL. If the math score
is greater than 600, then a record is inserted in HIGH_MATH. */
DECLARE
 lv_pidm NUMBER;
 lv_id VARCHAR2(9) := '882993466';
 lv_test_date DATE := '08-JUN-05';
 lv_sat_verbal NUMBER(3);
 lv_sat_math NUMBER(3);
BEGIN
 SELECT swrtest_pidm, swrtest_sat_verbal, swrtest_sat_math
 INTO lv_pidm, lv_sat_verbal, lv_sat_math
 FROM swrtest, swriden
 WHERE swriden_pidm = swrtest_pidm
 AND swriden_id = lv_id
 AND swrtest_test_date = lv_test_date

AND swriden_change_ind IS NULL;

 IF lv_sat_verbal + lv_sat_math > 1200 THEN
 IF lv_sat_verbal > 600 THEN
 INSERT INTO high_verbal (high_verbal_pidm,

 high_verbal_verbal_score,
 high_verbal_test_date)

 VALUES (lv_pidm, lv_sat_verbal,
 lv_test_date);

 END IF;
 IF lv_sat_math > 600 THEN
 INSERT INTO high_math (high_math_pidm, high_math_math_score,

 high_math_test_date)
 VALUES (lv_pidm, lv_sat_math,
 lv_test_date);
 END IF;
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 42

Section E: Conditional, Iterative, Sequential
Control

Lesson: Iterative Control

Loop types
Four types of loops:

• Simple Loops
• Numeric FOR Loops
• WHILE Loops
• Cursor FOR Loops

Simple Loops
The loop is useful when you want to guarantee that the body (or part of body) executes at least
one time. The simple loop will execute until an EXIT statement is executed and the value is
TRUE.

LOOP
 <sequence of statements>
END LOOP;

Exiting a simple loop
Exit any loop immediately with the EXIT statement.
EXIT WHEN <condition>;

Example
DECLARE
 lv_counter NUMBER := 1;
BEGIN
 LOOP
 INSERT INTO temp (col1, col2)
 VALUES (lv_counter, sysdate);
 lv_counter := lv_counter + 1;
 EXIT WHEN lv_counter > 10;
 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 43

Section E: Conditional, Iterative, Sequential
Control

Lesson: Iterative Control (Continued)

Numeric FOR loops
Repeat a sequence of statements a fixed number of times with a Numeric FOR loop.

FOR <index> IN <low_value> .. <high_value>
LOOP
 <sequence of statements>
END LOOP;

BEGIN
 FOR i IN 1..20 LOOP
 INSERT INTO temp (col1)
 VALUES (i);
 END LOOP;
END;

/

Loop index
The index is implicitly of type NUMBER, and cannot be reassigned within the loop. However, it
may be used in an expression. It does not need to be declared in the declaration section and only
exists for the life of the loop.

DECLARE
 lv_counter NUMBER;
BEGIN
 FOR loop_index IN 1..20 LOOP
 INSERT INTO temp (col1)
 VALUES (loop_index);
 loop_index := loop_index + 1; --illegal
 lv_counter := loop_index; --legal
 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 44

Section E: Conditional, Iterative, Sequential
Control

Lesson: Iterative Control (Continued)

WHILE loops
Use the WHILE loop when you want to repeat a sequence of statements until a specific condition
is no longer TRUE.

WHILE <condition is TRUE>
LOOP
 <sequence of statements>
END LOOP;

Example 1
DECLARE
 lv_counter number := 0;
BEGIN
 WHILE lv_counter < 50
 LOOP
 lv_counter := lv_counter + 1;
 INSERT INTO TEMP(col1, col2)
 VALUES (lv_counter, sysdate);
 END LOOP;
END;

/

Example 2
DECLARE
 lv_end_of_program BOOLEAN := FALSE;
 lv_counter number := 0;
BEGIN
 WHILE NOT lv_end_of_program LOOP
 lv_counter := lv_counter + 1;
 INSERT INTO TEMP(col1)
 VALUES (lv_counter);
 IF lv_counter >= 20 THEN
 lv_end_of_program := TRUE;
 END IF;
 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 45

Section E: Conditional, Iterative, Sequential
Control

Lesson: Sequential Control

The GOTO Statement
The GOTO statement performs unconditional branching to a named label.

The syntax for a GOTO statement is:
GOTO label_name;

The GOTO label is defined as follows:
<<label_name>>

Example
IF lv_rating > 80 THEN
 GOTO calc_raise;
END IF;

<<calc_raise>>
IF lv_job_title = 'SALESMAN' THEN
 lv_amount := lv_commission * 0.25;
ELSE
 lv_amount := lv_salary * 0.10;
END IF;

Notes
• At least one executable statement must follow a label
• The target label must be in the same scope as the GOTO statement
• The target label must be in the same part of the PL/SQL block as the GOTO statement

(GOTO in body cannot go to a label in the exception handler)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 46

Section E: Conditional, Iterative, Sequential
Control

Lesson: Sequential Control (Continued)

Block and loop labels
In addition to using labels for GOTO statements, you can also use labels for blocks and loops.

<<label name>>
DECLARE
--declarations
BEGIN
 --executable statements
EXCEPTION
 --exception handler
END label_name; --must include label name

<<outer_block>>
DECLARE
 lv_pidm NUMBER := 1234;
BEGIN
 /* sub-block */
 DECLARE
 lv_pidm NUMBER := 4321;
 BEGIN
 UPDATE swriden
 SET swriden_last_name = 'SMITH'
 WHERE lv_pidm in (lv_pidm, outer_block.lv_pidm);
 END;
 /* end of sub-block */
END outer_block;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 47

Section E: Conditional, Iterative, Sequential
Control

Lesson: Sequential Control (Continued)

EXIT labels
Label an EXIT as a way to specify exits from outer loops.

BEGIN
 <<outer_loop>>
 WHILE NOT lv_end_of_program LOOP
 <<inner_loop>>
 FOR i IN 1..10 LOOP
 EXIT outer_loop WHEN lv_end_of_program = TRUE;
 x := x + 1;
 IF x > 9
 THEN
 lv_end_of_program := TRUE;
 END IF;
 END LOOP inner_loop;
 END LOOP outer_loop;
END;

/

Qualifying variable names with labels
Label names can be used to distinguish between variables with the same name.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 48

Section E: Conditional, Iterative, Sequential
Control

Lesson: View Information on Screen

DBMS_ OUTPUT
Use the built-in package DBMS_OUTPUT to print to the screen. Before messages can be
printed to the screen, the command SET SERVEROUTPUT ON must be entered at the
SQL*Plus prompt or in the login.sql file (automatically executed when you log in).

A single string must be passed to the package. It may be a concatenation of strings and variables
but must result in a single string.

The package will be discussed in greater detail in Section G.

Example
DECLARE

 lv_numb number := 0;
BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.PUT_LINE('Starting Procedure');
 LOOP

 lv_numb := lv_numb + 10;
 EXIT WHEN lv_numb > 100;
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('The value is: '|| lv_numb);
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 49

Section E: Conditional, Iterative, Sequential
Control

Lesson: View Information on Screen
(continued)

Enable DBMS_OUTPUT in SQL Developer

Use button
to enable Make sure you are on the

DBMS_Output tab

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 50

Section E: Conditional, Iterative, Sequential
Control

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
What are the four types of loops?

Exercise 2
Write a PL/SQL block that will conditionally execute for the following conditions. Your script
should ask the user for a value. Use DBMS_OUTPUT to show the value entered and the new
value.

• If x = 20, then add 10
• If x = 30, then add 20
• If x = 40, then add 30
• If x = 50, then add 40

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 51

Section E: Conditional, Iterative, Sequential
Control

Lesson: Self Check (Continued)

Exercise 3
Using a loop, write a PL/SQL block that inserts values and the date that value was calculated into
the TEMP table. Values should be between 1 and 20. Check the TEMP table to make sure the
values were added.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 52

Section F: Handle PL/SQL Errors

Lesson: Overview

Introduction
This section provides a basic overview of PL/SQL exception handling.

Objectives
At the end of this section, the attendees will be able to

• understand advantages of exception handling
• identify types of exception handling
• identify PL/SQL error information functions.

Section contents
Overview ..52
Exception Handling..53
Named System Exceptions...54
Named Programmer-Defined Exceptions ..56
Exception Propagation ...58
Unnamed System Exceptions...62
SQLCODE and SQLERRM...63
Success or Failure?...65
Forcing Program Abort ..66
Debugging ..67
Self Check ..68

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 53

Section F: Handle PL/SQL Errors

Lesson: Exception Handling

Advantages of Exception Handling
• Event-driven handling of errors
• Separation of error-processing code
• Improved reliability of error handling

Types of Exceptions
• Named system exceptions
• Named programmer-defined exceptions
• Unnamed system exceptions

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 54

Section F: Handle PL/SQL Errors

Lesson: Named System Exceptions

Common errors
An ORACLE error “raises” an exception automatically. Below are some common errors that
have been defined for you.

EXCEPTION NAME ORACLE ERROR SQLCODE VALUE
CURSOR_ALREADY_OPEN ORA-06511 -6511
DUP_VAL_ON_INDEX ORA-00001 -1
INVALID_CURSOR ORA-01001 -1001
INVALID_NUMBER ORA-01722 -1722
LOGIN_DENIED ORA-01017 -1017
NO_DATA_FOUND ORA-01403 +100
NOT_LOGGED_ON ORA-01012 -1012
PROGRAM_ERROR ORA-06501 -6501
ROWTYPE_MISMATCH ORA-06504 -6504
STORAGE_ERROR ORA-06500 -6500
TIMEOUT_ON_RESOURCE ORA-00051 -51
TOO_MANY_ROWS ORA-01422 -1422
VALUE_ERROR ORA-06502 -6502
ZERO_DIVIDE ORA-01476 -1476

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 55

Section F: Handle PL/SQL Errors

Lesson: Named System Exceptions
(Continued)

Syntax
WHEN <exception name> [OR <exception name>] THEN
 <sequence of statements>
...
[WHEN OTHERS THEN --if used, must be the last handler
 <sequence of statements>]

WHEN OTHERS addresses all exceptions not defined within the exception handler.

Example
/* Retrieves the last name from swriden based on the ID that the user
enters. If one row is successfully retrieved, then the ID and last name
are inserted into the TEMP table. If no rows or too many rows are found,
then the transaction is rolled back and a row containing an error message
is inserted into the TEMP table. */
DECLARE
 lv_student_lname swriden.swriden_last_name%TYPE;
 lv_id_in swriden.swriden_id%TYPE;
BEGIN
 lv_id_in := &id;
 SELECT swriden_last_name
 INTO lv_student_lname
 FROM swriden
 WHERE swriden_id = lv_id_in
 AND swriden_change_ind IS NULL;
 INSERT INTO temp (col2, col3, message)
 VALUES (lv_id_in, sysdate, lv_student_lname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ROLLBACK;
 INSERT INTO temp (col2, col3, message)
 VALUES (lv_id_in, sysdate, ' No Data Found.');
 COMMIT;
 WHEN TOO_MANY_ROWS THEN
 ROLLBACK;
 INSERT INTO temp (col2, col3, message)
 VALUES (lv_id_in, sysdate, 'More than one row found for ID '
 || lv_id_in);
 COMMIT;
 WHEN OTHERS THEN
 ROLLBACK;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 56

Section F: Handle PL/SQL Errors

Lesson: Named Programmer-Defined
Exceptions

Syntax
DECLARE
 lv_my_exception EXCEPTION;
 ...

RAISE your exception
RAISE lv_my_exception;

Notes
• Once an exception is raised manually, it is treated the same way as if it were a predefined

internal exception
• Declared exceptions are scoped just like variables
• A user-defined exception is checked for manually and then raised, if appropriate
• Raise can be used with user-defined exceptions as well as built in exceptions

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 57

Section F: Handle PL/SQL Errors

Lesson: Named Programmer-Defined
Exceptions (Continued)

Example
DECLARE
 CURSOR C1 IS
 SELECT swrtest_pidm, swrtest_test_date, swrtest_activity_date
 FROM swrtest;
 lv_pidm NUMBER;
 lv_test_date DATE;
 lv_activity_date DATE;
 invalid_activity_date EXCEPTION; /* user name exception */
BEGIN
 OPEN c1;
 /* Exception is within a loop, so that if an test date is later
 than activity date, then the transaction is rolled back and the
 next row is fetched. For any other error, the loop is exited
 because the error is handled outside the loop
 */
 LOOP
 BEGIN
 EXIT WHEN c1%NOTFOUND;
 FETCH C1 INTO lv_pidm, lv_test_date,
 lv_activity_date;
 IF lv_test_date > lv_activity_date THEN
 RAISE invalid_activity_date;
 END IF;
 UPDATE swrtest
 SET swrtest_status = 'VALID'
 WHERE swrtest_pidm = lv_pidm;
 COMMIT;
 EXCEPTION
 WHEN invalid_activity_date THEN
 ROLLBACK;
 INSERT INTO temp (col1, col2, message)
 VALUES (lv_pidm, sysdate, 'Activity Date is Later than Test Date.');
 UPDATE SWRTEST
 SET swrtest_status = 'INVALID'
 WHERE swrtest_pidm = lv_pidm;
 COMMIT;
 END;
 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 INSERT INTO temp (col1, col2, message)
 VALUES (1234, sysdate, 'ERROR: Routine Failed.');
 COMMIT;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 58

Section F: Handle PL/SQL Errors

Lesson: Exception Propagation

Steps
The following are the steps involved in exception propagation.
Step Action

1 The current block is searched for a handler. If not found, go to step 2.
2 If an enclosing block is found, it is searched for a handler.
3 Steps 1 and 2 are repeated until either there are no more enclosing blocks, or a handler is

found.
• If there are no more enclosing blocks, the exception is passed back to the calling

environment
• If a handler is found, it is executed. When done, the block in which the handler

was found is terminated, and control is passed to the enclosing block (if one
exists), or to the environment (if there is no enclosing block)

Notes
• Only one handler per block may be active at a time
• If an exception is raised in a handler, the search for a handler for the new exception

begins in the enclosing block of the current block

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 59

Section F: Handle PL/SQL Errors

Lesson: Exception Propagation (Continued)

Example 1
Example - When A is Raised

Diagram
BEGIN
...

BEGIN
 IF lv_pidm = 123 THEN
RAISE A;
ELSIF lv_pidm = 124 THEN
 RAISE B;
ELSE
 RAISE C;
END IF;
EXCEPTION
WHEN A THEN
...
 END;
EXCEPTION
 WHEN B THEN
 ...
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 60

Section F: Handle PL/SQL Errors

Lesson: Exception Propagation (Continued)

Example 2
Example - When B is Raised

Diagram
BEGIN
...

BEGIN
IF lv_pidm = 123 THEN
 RAISE A;
ELSIF lv_pidm = 124 THEN
 RAISE B;
ELSE
 RAISE C;
END IF;
EXCEPTION
WHEN A THEN
 ...
END;
EXCEPTION
 WHEN B THEN
 ...
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 61

Section F: Handle PL/SQL Errors

Lesson: Exception Propagation (Continued)

Example 3
Example - When C is Raised

Diagram
BEGIN
...

BEGIN
IF lv_pidm = 123 THEN
 RAISE A;
ELSIF lv_pidm = 124 THEN
 RAISE B;
ELSE
 RAISE C;
END IF;
EXCEPTION
WHEN A THEN
 ...
END;
EXCEPTION
 WHEN B THEN
 ...
END;

Exception C has no handler and will result in a runtime unhandled exception.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 62

Section F: Handle PL/SQL Errors

Lesson: Unnamed System Exceptions

PRAGMA
What do you do when you want to trap an error that has not been predefined? You will need to
define the error yourself. Exceptions may only be handled by name (not ORACLE number). To
handle undefined errors, use PRAGMA.

Syntax
PRAGMA EXCEPTION_INIT (<user_defined_exception_name>,
<ORACLE_error_number>);

Example
DECLARE
 invalid_session EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_session, -22);

BEGIN
 INSERT INTO swriden (swriden_pidm, swriden_id,
 swriden_last_name, swriden_activity_date)
 VALUES (1234, '56', 'Peterson',SYSDATE);
EXCEPTION
 WHEN invalid_session THEN
 INSERT INTO TEMP(COL1, COL2, MESSAGE)
 VALUES (-22, SYSDATE, 'Invalid session ID. Access Denied');
 WHEN OTHERS THEN
 ROLLBACK;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 63

Section F: Handle PL/SQL Errors

Lesson: SQLCODE and SQLERRM

Viewing error information
The WHEN OTHERS exception handles all unspecified errors. However, even if you want to
generically handle all unspecified errors (such as rolling back changes made to the database),
you will want to know what error occurred. SQLCODE and SQLERRM will provide error
information to you.

SQLCODE
Returns the ORACLE error number of the exceptions, or 1 if it was a user-defined exception.

SQLERRM
Returns the ORACLE error message associated with the current value of SQLCODE.
Can also use any ORACLE error number as an argument.

No exception active
If no exception is active:

• SQLCODE = 0
• SQLERRM= 'normal, successful completion'

SQLCODE and SQLERRM cannot be used within a SQL statement.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 64

Section F: Handle PL/SQL Errors

Lesson: SQLCODE and SQLERRM
(Continued)

Example
DECLARE
 invalid_session EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_session, -22);
 lv_sqlcode NUMBER;
 lv_sqlerrm VARCHAR2(55);
BEGIN
 INSERT INTO swriden (swriden_pidm, swriden_id,
 swriden_last_name,swriden_activity_date)
 VALUES (1234, '56', 'Peterson',SYSDATE);
EXCEPTION
 WHEN invalid_session THEN
 INSERT INTO TEMP(COL1, COL2, MESSAGE)
 VALUES (-22, SYSDATE,
 'Invalid session ID. Access Denied');
 WHEN OTHERS THEN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1, 55);
 ROLLBACK;
 INSERT INTO temp (col1, col2, message)
 VALUES (lv_sqlcode, sysdate, lv_sqlerrm);
 COMMIT;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 65

Section F: Handle PL/SQL Errors

Lesson: Success or Failure?

Did the process really run?
If you are not checking for errors or do not have SERVEROUTPUT turned on to show you the
error you may be fooled into thinking your process finished properly when it did not.

Many PL/SQL programs will end with the phrase 'PL/SQL program completed successfully'
when there was actually a problem encountered in the code.

SQL> DECLARE
 2 lv_over50 number := &my_number;
 3 BEGIN
 4 IF lv_over50 < 50 THEN
 5 DBMS_OUTPUT.PUT_LINE('Your number must be greater than 50;');
 6 ELSE
 7 DBMS_OUTPUT.PUT_LINE('Thank you for a number 50 or larger');
 8 END IF;
 9* END;
SQL> /
Enter value for my_number: 22

PL/SQL procedure successfully completed.

SQL> set serveroutput on
SQL> /
Enter value for my_number: 22

Your number must be greater than 50;

PL/SQL procedure successfully completed.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 66

Section F: Handle PL/SQL Errors

Lesson: Forcing Program Abort

RAISE_APPLICATION_ERROR
You can force your program to abort and provide a user-created error by using a built-in called
RAISE_APPLICATION_ERROR. The procedure takes two required arguments:

• An error number in the range -20000 to -20999
• An error message in the form of a string or variable

SQL> DECLARE
 2 lv_over50 number := &my_number;
 3 BEGIN
 4 IF lv_over50 < 50 THEN
 5 raise_application_error('-20999','Your number must be greater

than 50');
 6 ELSE
 7 DBMS_OUTPUT.PUT_LINE('Thank you for a number 50 or larger');
 8 END IF;
 9* END;
SQL> /
Enter value for my_number: 22
DECLARE
*
ERROR at line 1:
ORA-20999: Your number must be greater than 50
ORA-06512: at line 5

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 67

Section F: Handle PL/SQL Errors

Lesson: Debugging

Developing a debugging plan
When you write simple PL/SQL programs, the error messages might be enough to let you know
how to fix bugs. However, when your programs become more complicated and you have stored
subprograms being called, it helps to have a game plan as to how to narrow your search.

Define What Went Wrong
When a PL/SQL program does not work, you will need to determine the specifics. Did Oracle
actually return an error? Did the program complete successfully, but return/calculate the wrong
value?

Reduce the Amount of Code
If you are dealing with a large program, it is helpful to comment out code to narrow your search.
Try commenting out a large section and running the program again. If the error still occurs, then
you can rule out the entire section that is commented out as being the problem.

Establish a Test Environment
Make sure that you are testing in an environment that allows you to experiment. Sometimes it is
helpful to create 'table clones'.

For instance, you are inserting rows into the SWRIDEN table, and the values don't seem to be
inserting correctly. However, the rows you are inserting are being 'mixed in' with the rows that
were initially there. To avoid confusion, create a clone of the table, but omit the rows. This
way, you know that the rows that are inserted are only the rows inserted from your program.

CREATE TABLE swriden_temp
 AS SELECT *
 FROM swriden
 WHERE 1=2;

Evaluate Variable Values
• Print to the screen using DBMS_OUTPUT
• Insert into a test table
• Use variables that change based on the section of code you are in so you know which

section is causing the problem

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 68

Section F: Handle PL/SQL Errors

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
What are three advantages of using PL/SQL Error Handling?

Exercise 2
What are three types of PL/SQL exceptions?

Exercise 3
Identify the type of PL/SQL exceptions in the following examples:

… DECLARE my_exception Exception;

…PRAGMA EXCEPTION_INIT my_exception, 1025;

DECLARE…
BEGIN…
…….
EXCEPTION
WHEN OTHERS THEN
 ROLLBACK;
END;
end

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 69

Section F: Handle PL/SQL Errors

Lesson: Self Check (Continued)

Exercise 4
Redo Exercise 2 from Section E to raise a user-defined exception if the number entered is not 20,
30, 40, or 50. Process the error in an exception handler and display an appropriate message.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 70

Section G: Cursors, Records, and Tables

Lesson: Overview

Introduction
A PL/SQL cursor allows you to fetch and process your data, one row at a time. You can also use
a PL/SQL table, which is similar to an array. A PL/SQL table will allow you to easily search
forward and backward.

Objectives
Upon completion of this section, each attendee will be able to

• identify the two types of cursors supported by PL/SQL
• outline the procedural steps for using explicit cursors in PL/SQL blocks
• demonstrate comprehension of PL/SQL cursors by writing a simple PL/SQL procedure

using explicit cursors
• use implicit cursor attributes
• create and reference PL/SQL tables.

Section contents
Overview ..70
Cursor Basics..71
Declare Cursors ..72
Open Cursors..73
Fetch from Cursors...74
Close Cursors ...75
Cursor Attributes ..76
Reference the Current Row ..78
Cursor FOR Loops ...79
Conceptual Cursor Loop Model ...80
Statements Associated with Implicit Cursors...81
PL/SQL Records...83
Tables..... ..86
Tables vs. Arrays..87
Tables of Records...88
Table Attributes..89
Self Check ..95

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 71

Section G: Cursors, Records, and Tables

Lesson: Cursor Basics

Associated cursor
SQL Statements with Associated Cursor

• INSERT
• UPDATE
• DELETE
• SELECT...INTO
• COMMIT
• ROLLBACK

Cursor types
Two types of cursors:

• EXPLICIT
o Multiple row SELECT Statements

• IMPLICIT

o All INSERT Statements
o All UPDATE Statements
o All DELETE Statements
o Single row SELECT…INTO Statements

Handling multiple returned rows
The set of rows returned by a query can consist of zero, one, or many rows, depending upon the
number of rows that meet the query's search condition.

When a query returns multiple rows, a cursor can be explicitly defined to:

• Process beyond the first row returned by the query
• Keep track of which rows are currently being processed

Cursor operations
• Declare the cursor
• Open the cursor
• Fetch data from the cursor
• Close the cursor

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 72

Section G: Cursors, Records, and Tables

Lesson: Declare Cursors

Syntax
DECLARE
 CURSOR <cursor name>
 IS <regular_select_statement>;

Scoping declared cursors
Declared cursors are scoped just as variables are.

DECLARE
 lv_pidm NUMBER(8);

 CURSOR c1 IS
 SELECT swriden_pidm
 FROM swriden
 WHERE swriden_change_ind IS NULL;
BEGIN...

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 73

Section G: Cursors, Records, and Tables

Lesson: Open Cursors

Open cursors
Open the cursor to process the SELECT statement and store the returned rows in the cursor.
OPEN <cursor name>;

Example
OPEN c1;

Functions
• Evaluates the SELECT statement associated with the cursor
• Allocates the resources used by ORACLE to process the query
• Identifies the active set

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 74

Section G: Cursors, Records, and Tables

Lesson: Fetch from Cursors

Fetch data
Fetch data from the cursor and store it in specified variables.
FETCH <cursor name> INTO <var1, var2...>;

Example
FETCH c1 INTO lv_pidm;

Restrictions
There must be exactly one INTO variable for each column selected by the SELECT statement.
The first column gets assigned to var1, the second assigned to var2, etc. These variables must be
declared in the declaration section.

%ROWTYPE
If fetching all columns of a table the %ROWTYPE operator can be used with a single variable.
When using this type of declaration the individual columns can be referenced as
<cursor_name>.<column_name>.

DECLARE
 lv_swriden_row swriden%ROWTYPE;
 CURSOR c1 IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind is null;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO lv_swriden_row;
 EXIT WHEN c1%NOTFOUND;

 INSERT INTO SWRIDEN_HISTORY
VALUES (lv_swriden_row.swriden_pidm,
lv_swriden_row.swriden_id,
lv_swriden_row.swriden_last_name,
lv_swriden_row.swriden_first_name,
lv_swriden_row.swriden_mi,
lv_swriden_row.swriden_change_ind,
lv_swriden_row.swriden_activity_date);

 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 75

Section G: Cursors, Records, and Tables

Lesson: Close Cursors

Close cursors
Close the cursor to free up resources.

CLOSE <cursor name>;

Example
CLOSE c1;

Functions
• Marks resources held by opened cursor as reusable by other processes
• No more rows can be fetched from a closed cursor

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 76

Section G: Cursors, Records, and Tables

Lesson: Cursor Attributes

%FOUND Attribute
After a cursor or cursor variable is opened but before the first fetch, %FOUND yields NULL.
Thereafter, it yields TRUE if the last fetch returned a row, or FALSE if the last fetch failed to
return a row.

FETCH swriden_cursor INTO lv_last_name, lv_first_name;
WHILE swriden_cursor%FOUND LOOP
 FETCH swriden_cursor INTO lv_last_name, lv_first_name;
 /* --data processing here */
END LOOP;

%NOTFOUND Attribute
Logical opposite of %FOUND.

LOOP
 FETCH swriden_cursor INTO lv_last_name, lv_first_name;
 EXIT WHEN swriden_cursor%NOTFOUND;
 /* --data processing here */
END LOOP;

%ROWCOUNT Attribute
When its cursor or cursor variable is opened, %ROWCOUNT is zeroed. Before the first fetch,
%ROWCOUNT yields 0. Thereafter, it yields the number of rows fetched so far.

LOOP
 FETCH swriden_cursor INTO lv_last_name, lv_first_name;
 EXIT WHEN swriden_cursor%NOTFOUND OR
 swriden_cursor%ROWCOUNT > 100;
 /* --data processing here */
END LOOP;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 77

Section G: Cursors, Records, and Tables

Lesson: Cursor Attributes (Continued)

%ISOPEN Attribute
Yields TRUE if its cursor or cursor variable is open; otherwise, yields FALSE.
A cursor must be closed before it can be reopened, so you can use this attribute to test whether
the cursor is open or not.

IF swriden_cursor%ISOPEN THEN
 FETCH swriden_cursor INTO lv_last_name, lv_first_name;
ELSE
 OPEN swriden_cursor;
 FETCH swriden_cursor INTO lv_last_name, lv_first_name;
END IF;

Example
/* For each student, the pidm and average gpa is selected from the
SWRREGS table. The rows are ordered so that the student with the
highest gpa is in the first row selected. Each row is fetched and
then assigned a rank. Then the PIDM and rank is inserted into the
SWRRANK table. */

DECLARE
 lv_rank NUMBER := 0;
 lv_pidm NUMBER := 0;
 lv_gpa NUMBER(5,2) := 0;
 CURSOR c1 is
 SELECT swrregs_pidm, AVG(swrregs_gpa)
 FROM swrregs
 GROUP BY swrregs_pidm
 ORDER BY AVG(swrregs_gpa) DESC;
BEGIN
OPEN c1;
LOOP
 FETCH c1 INTO lv_pidm, lv_gpa;
 EXIT WHEN c1%NOTFOUND;
 lv_rank := lv_rank + 1;
 INSERT INTO swrrank (swrrank_pidm, swrrank_class_rank,
 swrrank_activity_date)
 VALUES (lv_pidm, lv_rank, sysdate);
END LOOP;
IF c1%ISOPEN then
 CLOSE c1;
END IF;

END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 78

Section G: Cursors, Records, and Tables

Lesson: Reference the Current Row

WHERE CURRENT OF statement
Reference the current row with the WHERE CURRENT OF statement.
WHERE CURRENT OF <cursor_name>

The cursor must be declared with a FOR UPDATE clause when you will be updating, or deleting
from the database table.

Example
DECLARE
 swriden_row swriden%ROWTYPE;
 CURSOR c1 is
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NOT NULL
 FOR UPDATE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO swriden_row;
 EXIT WHEN c1%NOTFOUND;
 INSERT INTO swriden_temp
 (swriden_pidm, swriden_id, swriden_last_name,

swriden_first_name, swriden_change_ind,
swriden_activity_date)

 VALUES(swriden_row.swriden_pidm, swriden_row.swriden_id,
swriden_row.swriden_last_name,
swriden_row.swriden_first_name,
swriden_row.swriden_change_ind, SYSDATE);

 DELETE FROM swriden
 WHERE CURRENT OF c1;
 END LOOP;
 CLOSE c1;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 79

Section G: Cursors, Records, and Tables

Lesson: Cursor FOR Loops

Cursor FOR loops
Specify a sequence of statements to be repeated once for each row that is returned by the cursor
with the Cursor FOR Loop.

FOR <record_name> IN <cursor_name> LOOP
 --statements to be repeated go here
END LOOP;

Restrictions
• Cursor FOR loops are similar to Numeric FOR loops
• Cursor FOR loops specify a set of rows from a table using the cursor's name. Numeric

FOR loops specify an integer range
• A Cursor FOR loop record takes on the values of each row
• A Numeric FOR loop index takes on each value in the range
• Record_name is implicitly declared as:

record_name cursor%ROWTYPE;
• To reference an element of the record, use the record_name.column_name notation
• Functions in the select statement must have column alias'

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 80

Section G: Cursors, Records, and Tables

Lesson: Conceptual Cursor Loop Model

Model
• When a cursor is initiated, an implicit OPEN cursor_name is executed
• For each row that satisfies the query associated with the cursor, an implicit FETCH is

executed into the components of record_name
• When there are no more rows left to FETCH, an implicit CLOSE cursor_name is

executed and the loop is exited

Example
DECLARE
 lv_rank NUMBER := 0;
 CURSOR c1 is
 SELECT swrregs_pidm, AVG(swrregs_gpa) avg_gpa
 FROM swrregs
 GROUP BY swrregs_pidm
 ORDER BY AVG(swrregs_gpa) DESC;
BEGIN
 /* --an implicit open is done here */
 FOR cursor_row IN c1 LOOP

 /* --an implicit fetch is done here */
 lv_rank := lv_rank + 1;
 IF cursor_row.avg_gpa > 3.0 THEN
 /* could not use 'cursor_row.avg(swrregs_gpa)' here
 must have a column alias */
 INSERT INTO swrrank (swrrank_pidm, swrrank_class_rank,
 swrrank_activity_date)
 VALUES (cursor_row.swrregs_pidm, lv_rank, sysdate);
 END IF;

 END LOOP; /* --an implicit close is done here */
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 81

Section G: Cursors, Records, and Tables

Lesson: Statements Associated with Implicit
Cursors

Associated statements
• All INSERT Statements
• All UPDATE Statements
• All DELETE Statements
• All SELECT..INTO Statements

Restrictions
An implicit cursor is called the “SQL” cursor; it stores information concerning the processing of
the last SQL statement not associated with an explicit cursor.

OPEN, FETCH, and CLOSE do not apply.

All cursor attributes apply.

SQL% NOTFOUND
SQL%NOTFOUND evaluates to TRUE if the most recently executed SQL statement affects no
rows.
DECLARE
BEGIN
 UPDATE swbpers
 SET swbpers_ssn = '123456789'
 WHERE swbpers_pidm = 12340;
 IF SQL%NOTFOUND THEN
 INSERT INTO swbpers (swbpers_pidm, swbpers_ssn,
 swbpers_activity_date)
 VALUES (12340, '123456789', SYSDATE);
 END IF;
END;

SQL%FOUND
SQL%FOUND evaluates to TRUE if the most recently executed SQL statement affects one or
more rows.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 82

Section G: Cursors, Records, and Tables

Lesson: Statements Associated with Implicit
Cursors (Continued)

SQL% ROWCOUNT
SQL%ROWCOUNT evaluates to the number of rows affected by a DELETE, UPDATE, or
INSERT.

DECLARE
 lv_count NUMBER;
BEGIN
 INSERT INTO swriden_temp
 SELECT * FROM swriden
 WHERE swriden_change_ind IS NULL;
 lv_count := SQL%ROWCOUNT;
 INSERT INTO temp (col1, col3, message)
 VALUES (lv_count, SYSDATE,'Rows copied to SWRIDEN_TEMP');
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 83

Section G: Cursors, Records, and Tables

Lesson: PL/SQL Records

%ROWTYPE
You can use %ROWTYPE to represent multiple variables that relate back to all the columns in a
particular table (as discussed above), which is particularly helpful when selecting all columns
from a table into host variables.

SET SERVEROUTPUT ON
DECLARE
 lv_swriden_rec swriden%ROWTYPE;
 CURSOR swriden_cursor IS
 SELECT *
 FROM swriden;
BEGIN
 DBMS_OUTPUT.ENABLE;
 OPEN swriden_cursor;
 LOOP
 FETCH swriden_cursor INTO lv_swriden_rec;
 EXIT WHEN swriden_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(lv_swriden_rec.swriden_first_name
 ||' '||lv_swriden_rec.swriden_last_name);
 END LOOP;
 CLOSE swriden_cursor;
END;

/

Composite types
With %ROWTYPE, you cannot alter the variables or datatypes. If you need more flexibility,
you can define your own composite types, and then create records that are of that record type.

DECLARE
 TYPE personrectyp IS RECORD
 (pidm NUMBER(8),
 id VARCHAR2(9),
 full_name VARCHAR2(30));

 person_record personrectyp;
…

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 84

Section G: Cursors, Records, and Tables

Lesson: PL/SQL Records (Continued)

Syntax
 TYPE record_type IS RECORD (
 Field1 type1 [NOT NULL] [:= expr1],
 Field2 type2 [NOT NULL] [:= expr2],
 …
 Fieldn typen [NOT NULL] [:= exprn]);

Notes
• A record can have as many fields as desired
• Multiple records can use the same type

DECLARE
 TYPE personrectyp IS RECORD
 (pidm NUMBER(8),
 id VARCHAR2(9),
 full_name VARCHAR2(60));

 student_record personrectyp;
 employee_record personrectyp;
…

Declared record
Once the record is declared, you can precede the variable name with the record name.
BEGIN
 Student_record.id := '123456789';
 Student_record.pidm := 1;
 Student_record.full_name := 'Sam Smith';
…
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 85

Section G: Cursors, Records, and Tables

Lesson: PL/SQL Records (Continued)

Record assignment
In order for one record to be assigned to another, both records must be of the same type.

IF student_is_employed THEN
 employee_record := student_record;
END IF;

Assignment via SELECT INTO
A record can also be assigned with a SELECT statement.
SET SERVEROUTPUT ON
DECLARE
 TYPE personrectyp IS RECORD
 (pidm NUMBER(8),
 id VARCHAR2(9),
 full_name VARCHAR2(60));
 student_record personrectyp;
 employee_record personrectyp;
BEGIN
 DBMS_OUTPUT.ENABLE;
 SELECT swriden_pidm, swriden_id, swriden_first_name||
 ' '||swriden_mi||' '||swriden_last_name
 INTO student_record
 FROM swriden
 WHERE swriden_change_ind IS NULL
 AND swriden_pidm = 12342;
 DBMS_OUTPUT.PUT_LINE ('Pidm: ' ||student_record.pidm ||
 ' ID: ' ||student_record.id ||
 ' Name: ' ||student_record.full_name);
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 86

Section G: Cursors, Records, and Tables

Lesson: Tables

PL/SQL tables
Data can be selected and manipulated one row at a time through PL/SQL cursors. However,
cursors are intended to be used in a forward manner, meaning that the first row is fetched and
processed, and then each subsequent row is fetched and processed. After all rows are fetched,
the cursor is closed. Cursors are somewhat inflexible in the sense that processing cannot easily
jump forward and backward. PL/SQL tables are one possible solution to this problem.

There are two types of PL/SQL tables, nested tables and associative arrays (formerly known as
index-by tables). The associative arrays type will be used in this course.

Declaring PL/SQL tables
PL/SQL tables are similar to arrays in C. However, in order to declare a PL/SQL table, you need
to define the table type, and then declare a variable of this type.

DECLARE
 TYPE pidm_table IS TABLE OF number(8)
 INDEX BY BINARY_INTEGER;
 lv_pidm_tbl pidm_table;

Syntax
TYPE tabletype is TABLE OF type INDEX BY BINARY_INTEGER;

Refer to table elements
Once the type and the variable are declared, you can refer to an individual element in the
PL/SQL table by using the syntax:

Tablename(index)

Table indexes
The index is a variable of either type BINARY_INTEGER, or a variable or expression that can
be converted to a BINARY_INTEGER.
BEGIN
 lv_pidm_tbl(1) := 123;
 lv_pidm_tbl(2) := 124;
…
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 87

Section G: Cursors, Records, and Tables

Lesson: Tables vs. Arrays

PL/SQL Tables
Typical arrays rely on the fact that the index has a particular sequence to it (1,2,3,4). However, a
PL/SQL table is more similar to an Oracle table, which has a KEY column and a VALUE
column. The KEY is the binary integer used to look up the table value.

What does this mean? As long as the key is a binary integer, anything goes!
Your index does not have to be in sequential order.

BEGIN
 …
 lv_pidm_tbl(-10) := 123;
 lv_pidm_tbl(5) := 124;
 IF lv_pidm_tbl(-10) > lv_pidm_tbl(5) THEN
 …
 END IF;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 88

Section G: Cursors, Records, and Tables

Lesson: Tables of Records

Composite types
Prior to PL/SQL version 2.3, tables could only hold scalar types (VARCHAR2, NUMBER, etc.).
This meant that a separate table definition was required for each database field. However, 2.3
and above allows composite types, or tables of records.

DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
BEGIN
 SELECT *
 INTO employee_rec(10)
 FROM swriden
 WHERE swriden_pidm = 10;
 ...
END;

Referring to fields within records
To refer to field within the record, use the following syntax:
Table(index).field
employee_rec(10).swriden_last_name = 'Smith';
employee_rec(10).swriden_first_name = 'Sam';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 89

Section G: Cursors, Records, and Tables

Lesson: Table Attributes

Table attributes
Tables of records can be manipulated using table attributes.

Attribute Type Returned Description
COUNT NUMBER Returns the number of rows in the table.
DELETE N/A Deletes rows in a table.
EXISTS BOOLEAN Returns TRUE if the specified entry exists in the table.
FIRST BINARY_INTEGER Return the index of the first row in the table.
LAST BINARY_INTEGER Returns the index of the last row in the table.
NEXT BINARY_INTEGER Returns the index of the next row in the table after the

specified row.
PRIOR BINARY_INTEGER Returns the index of the previous row in the table before

the specified row.

COUNT
DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
 CURSOR swriden_cursor IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NULL;
 lv_counter NUMBER(6) := 0;
 lv_total_records NUMBER(6);
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 OPEN swriden_cursor;
 LOOP
 EXIT WHEN swriden_cursor%NOTFOUND;
 lv_counter := lv_counter + 1;
 FETCH swriden_cursor INTO employee_rec(lv_counter);
 END LOOP;
 CLOSE swriden_cursor;

 lv_total_records := employee_rec.count;
DBMS_OUTPUT.PUT_LINE('Total records: '||

lv_total_records);

END;
/
Total records: 27

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 90

Section G: Cursors, Records, and Tables

Lesson: Table Attributes (Continued)

DELETE
Removes rows from a PL/SQL table.

• Table.DELETE will remove all rows from a table.
• Table.DELETE(i) will remove the row with index i.
• Table.DELETE(i,j) will remove all rows with indices between i and j.

DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
BEGIN
 SELECT *
 INTO employee_rec(10)
 FROM swriden
 WHERE swriden_pidm = 12340
 AND swriden_change_ind IS NULL;
/* Delete record 10 from table employee_rec. */
 employee_rec.DELETE(10);

END;

DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
BEGIN
 /* Select records for table employee_rec */
 FOR I in 1..10 LOOP
 SELECT *
 INTO employee_rec(I)
 FROM swriden

 WHERE swriden_pidm = 12350
 AND swriden_change_ind IS NULL;
 END LOOP;
/* Delete records with indices between 6 and 10 from table
employee_rec. */
 employee_rec.DELETE(6,10);

 /* Deletes all records from table employee_rec */
 employee_rec.DELETE;

END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 91

Section G: Cursors, Records, and Tables

Lesson: Table Attributes (Continued)

EXISTS
Returns TRUE if a row with index i is in the table, and FALSE if the row does not exist in the
table. This attribute is useful when you want to make sure a record exists before referring to a
non-existent element.

DECLARE
 TYPE persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
 CURSOR swriden_cursor IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NULL;

 lv_counter NUMBER (6) := 0;
BEGIN
 OPEN swriden_cursor;

 LOOP
 EXIT WHEN swriden_cursor%NOTFOUND;
 lv_counter := lv_counter + 1;
 FETCH swriden_cursor INTO employee_rec (lv_counter);
 END LOOP;

 CLOSE swriden_cursor;

 IF employee_rec.EXISTS(10) THEN
 employee_rec.DELETE(10);
 END IF;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 92

Section G: Cursors, Records, and Tables

Lesson: Table Attributes (Continued)

FIRST and LAST
Return the index of the first and last rows in the PL/SQL table.

SET SERVEROUTPUT ON
DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
 CURSOR swriden_cursor IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NULL;
 lv_counter NUMBER(6) := 0;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 OPEN swriden_cursor;
 LOOP
 EXIT WHEN swriden_cursor%NOTFOUND;
 lv_counter := lv_counter + 1;
 FETCH swriden_cursor INTO employee_rec(lv_counter);
 END LOOP;
 CLOSE swriden_cursor;
 DBMS_OUTPUT.PUT_LINE('Total records: '|| employee_rec.count);
 employee_rec.DELETE(1);
 employee_rec.DELETE(3);
 employee_rec.DELETE(10);
 DBMS_OUTPUT.PUT_LINE('After deleting rows...');
 DBMS_OUTPUT.PUT_LINE(' First record: '|| employee_rec.first);
 DBMS_OUTPUT.PUT_LINE(' Last record: '|| employee_rec.last);
 DBMS_OUTPUT.PUT_LINE('Total records: '|| employee_rec.count);
END;
/

Total records: 27
After deleting rows...
First record: 2
Last record: 27
Total records: 24

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 93

Section G: Cursors, Records, and Tables

Lesson: Table Attributes (Continued)

NEXT and PRIOR
Return the index of the next and previous element in the PL/SQL table.

DECLARE
 Type persontabtype IS TABLE OF swriden%ROWTYPE
 INDEX BY BINARY_INTEGER;
 employee_rec persontabtype;
 CURSOR swriden_cursor IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NULL;
 lv_counter NUMBER(6) := 0;
 lv_current_rec NUMBER(6);
 lv_total_recs NUMBER(6);
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 OPEN swriden_cursor;
 LOOP
 EXIT WHEN swriden_cursor%NOTFOUND;
 lv_counter := lv_counter + 1;
 FETCH swriden_cursor INTO employee_rec(lv_counter);
 END LOOP;
 CLOSE swriden_cursor;
 DBMS_OUTPUT.PUT_LINE('Total records: '||employee_rec.count);
 employee_rec.DELETE(1);
 employee_rec.DELETE(3);
 employee_rec.DELETE(10);
 DBMS_OUTPUT.PUT_LINE('After deleting rows...');
 DBMS_OUTPUT.PUT_LINE(' First record: '|| employee_rec.first);
 DBMS_OUTPUT.PUT_LINE(' Last record: '|| employee_rec.last);
 DBMS_OUTPUT.PUT_LINE('Total records: '|| employee_rec.count);
 lv_current_rec := employee_rec.FIRST;
 lv_total_recs := employee_rec.count;

FOR i IN 1 .. lv_total_recs LOOP
 DBMS_OUTPUT.PUT_LINE(
 employee_rec(lv_current_rec).swriden_first_name ||' '||
 employee_rec(lv_current_rec).swriden_last_name);
 lv_current_rec := employee_rec.NEXT(lv_current_rec);
 END LOOP;
END;
/

(results on next page…)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 94

Section G: Cursors, Records, and Tables

Lesson: Table Attributes (Continued)

NEXT and PRIOR, continued

Total records: 27
After deleting rows...
First record: 2
Last record: 27
Total records: 24
Robert Smith
Sandy Jones-Erickson
Ralph Erickson
Susan Erickson
Nancy White
Joan Marx
Stephanie Clifford
Michelle Dukes
…………

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 95

Section G: Cursors, Records, and Tables

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Write a PL/SQL script using a cursor to display the id, last_name and first_name from
SWRIDEN.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 96

Section G: Cursors, Records, and Tables

Lesson: Self Check (Continued)

Exercise 2
Write a PL/SQL script that prompts for a pidm, and selects all columns from the person table,
SWBPERS, based upon that pidm. Rather than explicitly declaring all the host variables, use
%ROWTYPE. Select the columns by using the SELECT INTO statement. Display the SSN and
birth date variables using DBMS_OUTPUT.PUT_LINE. If no record is found, then display an
error message to the user.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 97

Section G: Cursors, Records, and Tables

Lesson: Self Check (Continued)

Exercise 3
Create a PL/SQL script which selects the pidm, id, first_name || last_name (column alias of
'name') and change indicator from SWRIDEN. Select both current rows (change_ind is null) and
non-current rows from SWRIDEN (change_ind is NOT null). Sort by pidm and change
indicator.

Write each pidm, id, and name using the DBMS_OUTPUT package. If the change indicator is
null, specify that the record is 'Current' when writing the line. If the change indicator is not null,
specify 'Historical'. Run your script.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 98

Section G: Cursors, Records, and Tables

Lesson: Self Check (Continued)

Exercise 4
Starting with Exercise 3, using an IF statement, alter your script so that the person information
(SSN and birth date) is displayed for current rows and is not displayed for the historical records
(change indicator is not null).

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 99

Section G: Cursors, Records, and Tables

Lesson: Self Check (Continued)

Exercise 5
Create a PL/SQL script that selects the pidm and birth date from SWBPERS into a PL/SQL
table. Sort by birth date.

Using the PL/SQL table, display the pidm and birth date when the birth date is equal to or greater
than '01-JAN-1970', evaluating each record one at a time. Once a record's information is
displayed, remove the record from the PL/SQL Table (NOT the SWBPERS table).

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 100

Section G: Cursors, Records, and Tables

Lesson: Self Check (Continued)

Exercise 6
Using the script from the previous exercise, display the pidm and birth date for all records where
the birth date is less than '01-JAN-1970'. You should not have to reevaluate the birth date
condition, because records whose birth dates were equal to or greater than '01-JAN-1970' were
deleted in the previous step.
Note: Be sure to make use of some PL/SQL table attributes.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 101

Section H: Procedures and Functions

Lesson: Overview

Introduction
The PL/SQL code we have seen so far could be used instead of a C or Cobol program. However,
if we merely stop there, we are not taking advantage of all the power PL/SQL has to offer.

In this section, we are going to expand upon the PL/SQL layer by creating stored database
subprograms that can be called from multiple environments.

Objectives
This section will examine the following:

• Advantages of modularizing code
• Differences between a function and a procedure
• Advantages of creating functions and procedures
• Create both a function and a procedure in the section exercises

Section contents
Overview ..101
Modular Code...102
Layers of Oracle Programming ..103
Procedure..104
Parameters ..105
Executing Procedures ...107
Executing Procedures Example..108
Positional vs. Named Notation...110
Functions ..111
Calling a Function ..114
What Can Functions Do For You? ...115
Example Function...116
Handling Compilation Errors ...118
Locate Objects in the Database ..121
Remove Subprograms ..124
Self Check ..125

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 102

Section H: Procedures and Functions

Lesson: Modular Code

Modularizing code
Modularizing code is the process of breaking large processes down into simpler blocks of code.

Advantages
• More reusable
• More manageable
• More readable
• More reliable

Anonymous Block
An anonymous block is a PL/SQL block that has no name. This is the type of block that we have
been using so far – scripts of PL/SQL code that will be compiled and evaluated every time the
script is run.

One anonymous block cannot call another anonymous block. Therefore, even if you modularize
these blocks it doesn't give you the advantages listed above. To do that you need to create
named PL/SQL blocks.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 103

Section H: Procedures and Functions

Lesson: Layers of Oracle Programming

Layers
The most basic layer in which you interact with the database is SQL.

The next layer is the core of PL/SQL and the Oracle database which is comprised of stored
PL/SQL units. Two of the primary PL/SQL objects needed to run PL/SQL are STANDARD and
DBMS_STANDARD packages. Since these packages are created by default when you create a
database and are integrated in the core of Oracle's underlying code, you don't have to explicitly
reference them.

You can create entire applications with just these layers. However, your programs can be written
much more efficiently by writing subprograms, which can be called from multiple applications.

Anonymous Block
An anonymous block is a PL/SQL block that has no name. This is the type of block that we have
been using so far – scripts of PL/SQL code that will be compiled and evaluated every time the
script is run.

One anonymous block cannot call another anonymous block. Therefore, even if you modularize
these blocks it doesn't give you the advantages listed above. To do that you need to create
named PL/SQL blocks, also known as Stored Subprograms.

Stored Subprograms
Stored subprograms are named PL/SQL that is stored within the database. They can then be
called from any application that allows the use of SQL or PL/SQL. There are two main types of
subprograms - procedures and functions.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 104

Section H: Procedures and Functions

Lesson: Procedure

Definition
A procedure is a stored subprogram that performs a specific action. By default, it returns no
value.

Syntax
CREATE [OR REPLACE] PROCEDURE name [(parameter [, parameter, ...])]
IS
 [local declarations]
BEGIN
 executable statements
[EXCEPTION
 exception handlers]
END [name];

Parameter declarations are optional. However, when used they take on the following syntax:

parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expr]

PL/SQL has no explicit limit of parameters.

Notes
The keyword DECLARE is not used. Local declarations come after the keyword IS and before
the keyword BEGIN.

A procedure has two parts - the specification and the body.

• The procedure specification begins with the keywords CREATE OR REPLACE
PROCEDURE and ends with the procedure name or parameter list

• The procedure body begins with the keyword IS and ends with the keyword END,
followed by an optional procedure name

Effects
• The procedure will be owned by a schema (username that created the procedure)
• The procedure is stored as compiled code
• The procedure can be called from multiple applications, such as another PL/SQL

program, Oracle Forms, Pro*C, Pro*COBOL

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 105

Section H: Procedures and Functions

Lesson: Parameters

Parameter Constraints
When a parameter is passed into a procedure, the constraints are passed also. Therefore, in a
procedure declaration, it is illegal to constrain a CHAR or VARCHAR2 variable with a length
and a numeric variable with a precision and scale.

For example, NUMBER(4) is illegal – use just the type declaration NUMBER.

You can use existing database column types when creating parameters by using the same
%TYPE operator used to declare variables. The parameter takes on the datatype of the
referenced column.

Examples
CREATE OR REPLACE PROCEDURE my_proc (pi_pidm NUMBER,
 pi_last_name VARCHAR2) IS
BEGIN
…
END;
CREATE OR REPLACE PROCEDURE my_proc2 (pi_pidm
 swriden.swriden_pidm%TYPE,

pi_last_name swriden.swriden_last_name%TYPE) IS

BEGIN
…
END;

Warning
There are known exploits of PL/SQL that use the lack of strong variable typing in parameters to
a disadvantage. Therefore, it is recommended that parameters be assigned to local variables
inside the code of the procedure using strongly typed data types.

CREATE OR REPLACE PROCEDURE my_proc (pi_pidm NUMBER,
 pi_text VARCHAR2) IS
 vi_pidm NUMBER(4);
 vi_text VARCHAR2(10);
BEGIN
 vi_pidm := pi_pidm; -- error if value passed > 4 digits
 vi_text := substr(pi_text,1,10); --ensures max of 10 char passed

…
END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 106

Section H: Procedures and Functions

Lesson: Parameters (Continued)

Modes
If a mode is not explicitly defined within the subprogram, the default of IN is assumed.

Mode Description
IN The value of the parameter is passed into the subprogram, and is

considered read-only.
OUT The value of the parameter being passed is ignored (write-only).

Instead, the value is derived from within the subprogram, and
the content of the formal parameter is assigned to the actual
parameter and returned to the calling program.

IN OUT A combination of both IN and OUT. The value of the parameter
can be passed in, and the parameter value can be reassigned
within the subprogram.

Default Value
Parameter_name [mode] parameter_type { := DEFAULT } initial_value;

Try to make the default parameters last in the list. This makes the subprogram easiest to call
especially if the default value is being used. If the parameter is omitted, it will take on the
default value.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 107

Section H: Procedures and Functions

Lesson: Executing Procedures

Execution
From within SQL*Plus, a procedure can be executed by using the EXECUTE command
followed by the procedure name.

Any arguments required by the procedure must be passed in parentheses. Be sure to enclose
string and date values in single quotes.

SQL> EXECUTE procedure_name(parm1, parm2...);
SQL> EXECUTE sp_my_procedure(12345,'Smith', '21-Dec-2007');

When executing a procedure through PL/SQL you can omit the keyword EXECUTE.

BEGIN
 sp_my_procedure(12345,'Smith', '21-Dec-2007');
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 108

Section H: Procedures and Functions

Lesson: Executing Procedures Example

Example
/* Purging block. Retrieves non-current row from SWRIDEN based on the
pidm passed in. It inserts the row into SWRIDEN_HISTORY. After the
row has been inserted, then the row from SWRIDEN is deleted. */

CREATE OR REPLACE PROCEDURE purge_one_swriden (pi_pidm NUMBER) IS
 lv_sqlcode NUMBER;
 lv_sqlerrm VARCHAR2(55);

 swriden_row swriden%ROWTYPE;
 CURSOR c1 IS
 SELECT *
 FROM swriden
 WHERE swriden_change_ind IS NOT NULL
 AND swriden_pidm = pi_pidm

 FOR UPDATE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO swriden_row;
 EXIT WHEN c1%NOTFOUND;

INSERT INTO swriden_history (swriden_hist_pidm,
swriden_hist_id, swriden_hist_last_name,
swriden_hist_first_name, swriden_hist_change_ind,
swriden_hist_activity_date)

 VALUES (swriden_row.swriden_pidm, swriden_row.swriden_id,
 swriden_row.swriden_last_name,
 swriden_row.swriden_first_name,
 swriden_row.swriden_change_ind, SYSDATE);
 DELETE FROM swriden
 WHERE CURRENT OF c1;
 END LOOP;
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1, 55);
 BEGIN
 DBMS_OUTPUT.PUT_LINE(lv_sqlcode||' '||lv_sqlerrm);
 END;

END purge_one_swriden;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 109

Section H: Procedures and Functions

Lesson: Executing Procedures Example
Example (continued)

Actual Parameter vs. Formal Parameter
You can also pass parameters to procedures in the form of variables, also known as the actual
parameter. The variable name passed to the procedure need not match the name of the parameter
as defined in the procedure, the formal parameter.

In the example of purge_one_swriden, the subprogram is looking for a pidm to be passed in.
Below is an example of how the procedure might be called from PL/SQL.

DECLARE
 CURSOR purge_cursor IS
 SELECT swbpers_pidm
 FROM swbpers
 WHERE swbpers_pidm=12340;
BEGIN
 FOR purge_rec IN purge_cursor LOOP
 purge_one_swriden(purge_rec.swbpers_pidm);
 END LOOP;
END;

/

In the example above the actual parameter is the purge_rec.pidm variable, since this is the
variable being passed into the procedure. When control passes to the subprogram, the value is
assigned to pi_pidm. In this case, pi_pidm is the formal parameter, or the parameter name
defined within the subprogram.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 110

Section H: Procedures and Functions

Lesson: Positional vs. Named Notation

Notation types
The previous examples have all used positional notation. Positional notation assigns the
variables to parameters by the order in which they are passed.

You may also assign variables using named notation.

DECLARE
 Variable_one VARCHAR2(2);
 Variable_two VARCHAR2(5);
 Variable_three VARCHAR2(1);
BEGIN
 call_function(Parameter_two => Variable_two,
 Parameter_one => Variable_one,
 Parameter_three => Variable_three);
…
END;

/

Notes:
• Named Notation allows you to omit parameters that have default values.
• Named Notation allows for flexibility in modifying parameters – if the stored program

changes the order of parameters the calling program need not be modified.
• Neither positional nor named notation is more efficient, therefore it is based upon

preference.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 111

Section H: Procedures and Functions

Lesson: Functions

Definition
A function is a subprogram that computes a value. Functions and procedures are structured
alike, except that functions must return a variable using the RETURN clause.

Syntax
CREATE [OR REPLACE] FUNCTION name [(parameter [, parameter, ...])]
 RETURN datatype IS
 [local declarations]
BEGIN
 executable statements
[EXCEPTION
 exception handlers]
END [name];

Parameters are optional but when used take on the same syntax, have the same properties and
obey the same rules as parameters in procedures:

parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expr]

Example
/* Accepts an id, and returns the PIDM. */
CREATE OR REPLACE FUNCTION get_pidm (pi_id VARCHAR2) RETURN NUMBER IS
 lv_pidm swriden.swriden_pidm%TYPE;
BEGIN
 SELECT swriden_pidm
 INTO lv_pidm
 FROM swriden
 WHERE swriden_id = pi_id;
 RETURN lv_pidm;
END get_pidm;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 112

Section H: Procedures and Functions

Lesson: Functions (Continued)

Notes
The keyword DECLARE is not used. Local declarations are placed after the keyword IS and
before the keyword BEGIN.

Like a procedure, a function has two parts - the specification and the body.

• The function specification begins with the keywords CREATE OR REPLACE
FUNCTION and ends with a RETURN clause.

• The function body begins with the keyword IS and ends with the keyword END followed
by an optional function name.

The RETURN statement immediately completes the executions of a subprogram, whether it is
the last statement or not.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 113

Section H: Procedures and Functions

Lesson: Functions (Continued)

RETURN statements
A good programming practice is to only have one RETURN statement per function to increase
maintainability and make the code easier to follow.

/* Example of multiple return statements */

CREATE OR REPLACE FUNCTION get_pidm (pi_id VARCHAR2)
 RETURN VARCHAR2 IS
 lv_count NUMBER;
BEGIN
 SELECT count(*)
 INTO lv_count
 FROM swriden
 WHERE swriden_id = pi_id;
 IF lv_count = 1 THEN
 RETURN 'ID only has one record';
 ELSE
 RETURN 'ID has multiple records';
 END IF;
END get_pidm;

/* Example using single return statement – easier to maintain and

follow */
CREATE OR REPLACE FUNCTION get_pidm (pi_id VARCHAR2)
 RETURN VARCHAR2 IS
 lv_count NUMBER;
 lv_message VARCHAR2(50);
BEGIN
 SELECT count(*)
 INTO lv_count
 FROM swriden
 WHERE swriden_id = pi_id;
 IF lv_count = 1 THEN
 lv_message := 'ID only has one record';
 ELSE
 lv_message := 'ID has multiple records';
 END IF;
 RETURN lv_message;
END get_pidm;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 114

Section H: Procedures and Functions

Lesson: Calling a Function

Calling a Function
Because a function returns a value there needs to be a way of storing that return value.

When the function is called from PL/SQL the return value can be assigned to a variable. If the
function is called in a SELECT, INSERT, UPDATE, or DELETE statement, it is treated as if it
were a database column.

DECLARE

 lv_pidm swraddr.swraddr_pidm%TYPE;
BEGIN
 …
 lv_pidm := get_pidm('123G');
 …
END;

OR

SELECT get_pidm('123G')
 FROM dual;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 115

Section H: Procedures and Functions

Lesson: What Can Functions Do For You?

Benefits
You can create a library of customized calculations.

Functions can also be called within a SELECT statement.
SELECT get_id(swbpers_pidm),swbpers_ssn, …
 FROM swbpers;

You don't need a join! Any PRO*C, PRO*COBOL, or Oracle Form that needs an ID can use
this function, without explicitly referring to SWRIDEN.

Banner contains a large library of functions to perform common actions like calculate age based
on a birthdate and some date in time (F_CALCULATE_AGE) and figure out which level a
student is at (F_CLASS_CALC_FNC). Check for an existing Banner function before you re-
invent you own.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 116

Section H: Procedures and Functions

Lesson: Example Function

Example
/* Accepts the parameter of pidm_in and returns the age calculated
from SWBPERS where pidm is equal to pidm_in. If no row is found for
the pidm, then a message is returned to indicate this. If any other
error occurs, then the error number and error message are returned.
*/

CREATE OR REPLACE FUNCTION get_age (pi_pidm IN NUMBER)
 RETURN VARCHAR2 IS
 lv_age NUMBER(3);
BEGIN
 SELECT TRUNC(MONTHS_BETWEEN(SYSDATE,swbpers_birth_date)/12)
 INTO lv_age
 FROM swbpers
 WHERE swbpers_pidm = pi_pidm;
 RETURN TO_CHAR(LV_AGE);

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 'No data in SWBPERS';
 WHEN OTHERS THEN
 DECLARE
 lv_sqlcode NUMBER(5);
 lv_sqlerrm VARCHAR2(30);
 BEGIN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM,1,30);
 RETURN lv_sqlcode || lv_sqlerrm;
 END;
END GET_AGE;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 117

Section H: Procedures and Functions

Lesson: Example Function (Continued)

Execute the function
To execute the function, we can do the following:

SQL> SELECT get_age(12340) FROM DUAL;

GET_AGE(12340)

32

Most likely, we will use the function within a SELECT statement that returns more than just the
age:

SQL> SELECT swriden_first_name, swriden_last_name,
 get_age(swriden_pidm)
 FROM swriden
 WHERE swriden_change_ind IS NULL;

FIRST_NAME LAST_NAME GET_AGE(PIDM)
--------------- ------------------ -----------------
Julie Brown 27
Robert Smith 29
Peter Johnson No data in SWBPERS

The function can also be called from a stored or anonymous PL/SQL block:

SQL> declare
 2 lv_age number;
 3 begin
 4 lv_age := get_age(12340);
 5 DBMS_OUTPUT.PUT_LINE('Age is: ' || lv_age);
 6* end;
SQL> /
Age is: 33

PL/SQL procedure successfully completed.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 118

Section H: Procedures and Functions

Lesson: Handling Compilation Errors

Compilation errors
If there were compilation errors for functions or procedures you will receive a message saying
your PL/SQL had errors:

 SQL> CREATE OR REPLACE FUNCTION get_pidm (pi_id VARCHAR2)
 2 RETURN VARCHAR2 IS
 3 lv_count NUMBER;
 4 lv_message VARCHAR2(50);
 5 BEGIN
 6 SELECT count(*)
 7 INTO lv_count
 8 FROM swriden
 9 WHERE swriden_id = pi_id;
 10 IF lv_count = 1 THEN
 11 lv_message := 'ID only has one record';
 12 ELSE
 13 lv_mvessage := 'ID has multiple records';
 14 END IF;
 15 RETURN lv_message;
 16* END get_pidm;
SQL> /

Warning: Function created with compilation errors.

The code is still stored in the database but the procedure or function is marked INVALID and
cannot be called until it compiles completely.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 119

Section H: Procedures and Functions

Lesson: Handling Compilation Errors
(continued)

To find out what the errors are type the following:

SQL> show errors
Errors for FUNCTION GET_PIDM:

LINE/COL ERROR
-------- ---
13/8 PLS-00201: identifier 'LV_MVESSAGE' must be declared
13/8 PL/SQL: Statement ignored

You cannot easily fix the stored procedure or function directly when errors occur. You should
store your source code in a text file that can be modified to correct any errors and then re-run to
store the new code in the database.

The REPLACE option of the CREATE or REPLACE command will allow the existing stored
database procedure/function to be replaced with the new version.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 120

Section H: Procedures and Functions

Lesson: Handling Compilation Errors
(continued)

Handling Errors in SQL Developer

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 121

Section H: Procedures and Functions

Lesson: Locate Objects in the Database

Dictionary Views
There are a number of data dictionary views that can be used to view your PL/SQL objects.

USER_OBJECTS – shows all objects owned by the user including tables and PL/SQL
USER_SOURCE – contains the source code, line by line of all user owned PL/SQL
USER_DEPENDENCIES – contains the related objects called in stored PL/SQL

Retrieve Code
If you ever lose a copy of your stored PL/SQL code it can be retrieved from the
USER_SOURCE view. Each line of your code is stored as a row in this view.

SQL> desc user_source
 Name Null? Type
 --------------------- -------- -------------------------
 NAME VARCHAR2(30)
 TYPE VARCHAR2(12)
 LINE NUMBER
 TEXT VARCHAR2(4000)

Validity
To check whether a subprogram is valid, query the data dictionary view USER_OBJECTS.

SQL> SELECT OBJECT_NAME, STATUS
 FROM ALL_OBJECTS
 WHERE OBJECT_NAME = 'GET_ID';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 122

Section H: Procedures and Functions

Lesson: Locate Objects in the Database
(continued)

Dependencies
As a subprogram is created in the database, it is compiled. During the compilation, Oracle keeps
track of the dependencies such as which tables or other objects the subprogram is referencing. A
change to one of the dependencies later on, such as altering or dropping a table, could potentially
affect your subprogram to make it invalid.

Referenced Objects
To find which subprograms will be affected if you change a table check the
USER_DEPENDENCIES view:

SQL> SELECT name, type, referenced_owner, referenced_name
 2 FROM user_dependencies
 3 WHERE referenced_name = 'SWRIDEN';

NAME TYPE REFERENCED_OWNER REFERENCED_NAME
-------------------- --------- ---------------- -------------------
F_JOB_INFO FUNCTION SATURN SWRIDEN
F_PLEDGE_SOLICITOR FUNCTION SATURN SWRIDEN
F_ORDER_BY FUNCTION SATURN SWRIDEN
F_FACT_NAME FUNCTION SATURN SWRIDEN
F_INTERVIEWER_NAME FUNCTION SATURN SWRIDEN
F_SUPERVISOR_INFO FUNCTION SATURN SWRIDEN

Query the data dictionary view DBA_OBJECTS for a list of all objects that may be invalid as a
result of changes to referenced or referencing objects.

SQL> SELECT OWNER, OBJECT_NAME, STATUS FROM DBA_OBJECTS
 2 WHERE STATUS <> 'VALID';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 123

Section H: Procedures and Functions

Lesson: Locate Objects in the Database
(continued)

In SQL Developer, locate your object through the Heirarchical Tree. Only the objects you own
are in this tree. If you need to view objects owned by other users, click on the Other Users
option at the bottom of the tree.

Invalid objects will have a red 'x' next to their name. Click on the object to view the errors.
Right click to edit the object or to re-compile it.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 124

Section H: Procedures and Functions

Lesson: Remove Subprograms

Removing Procedures and Functions

If you want to remove a subprogram from the database use the DROP command.

DROP PROCEDURE <procedure_name>;

DROP FUNCTION <function_name>;

Once removed, the objects can no longer be referenced. If the object was called from another
sub-program it will cause that sub-program to go invalid.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 125

Section H: Procedures and Functions

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
In the account table TWRACCD, an amount is considered unpaid if the PAID_DATE is null.
Create a stored function called calc_amt_owed, which returns the sum amount of unpaid bills
when a pidm is passed.

Exercise 2
Select the first name, last name, and amount owed, using the function you just created.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 126

Section H: Procedures and Functions

Lesson: Self Check (Continued)

Exercise 3
Create a procedure called insert_acct_info that inserts an account transaction into the account
table (TWRACCD). The procedure should have parameters for:
• PIDM
• TERM_CODE
• DETC_CODE
• TRANS_TYPE

• BILL_DATE
• PAID_DATE
• AMOUNT

ACTIVITY_DATE should be automatically derived within the procedure.

Be sure to test your procedure by calling the procedure to insert a record.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 127

Section H: Procedures and Functions

Lesson: Self Check (Continued)

Exercise 4
Create a procedure that inserts into the TEMP table when an error occurs in a script (replacing
the bolded code below). The procedure should pass in the error code and error message.

...

WHEN OTHERS THEN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1, 55);
 ROLLBACK;
 INSERT INTO temp (col1, col2, message)
 VALUES (lv_sqlcode, sysdate, lv_sqlerrm);
 COMMIT;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 128

Section H: Procedures and Functions

Lesson: Self Check (Continued)

Exercise 5
Write a quick PL/SQL script that causes an error, such as retrieving multiple rows into a
SELECT INTO statement, and calls your procedure in Exercise 4 when it encounters the error.
Select from the TEMP table to make sure that the error handler is working properly.

Exercise 6
Locate your newly created PL/SQL objects in the database using USER_OBJECTS,
USER_SOURCE, and USER_DEPENDENCIES.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 129

Section I: Packages

Lesson: Overview

Introduction
As you create stored functions and procedures, you will be able to reduce the amount of code
that is in each application. However, when you begin to rely heavily upon stored subprograms,
you will soon realize that it will be difficult to know what each subprogram is used for. Of
course, you will want to add comments in each subprogram. But beyond this, what can you do?
You can bundle subprograms into packages.

Not only will packages allow us to bundle subprograms, but also global cursors and variables.

Objectives
By the end of this section, each attendee will be able to

• create database packages
• list the security benefits that packages offer
• list some built-in packages that Oracle provides.

Section contents
Overview ..129
Benefits of Packages ..130
Package Structure ...132
Reference Package Elements and Cursors ...135
Unqualified Package Elements...136
Access to Package Elements ..137
Synchronize the Specification and the Body..141
Public vs. Private Data Elements ...142
Do You Really Need the Package Body?...146
Overloading Packages ..147
Recommendations for Using Packages ..148
Security...149
Self Check ..150

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 130

Section I: Packages

Lesson: Benefits of Packages

Packages promote the object-oriented model
Although packages do not support every concept in the object-oriented design model, they do
provide for some principles such as encapsulation. Packages hide the implementation so that
only the package (not your application) is affected if the implementation changes

The Oracle RDBMS automatically tracks the validity of all program objects (procedures,
functions, and packages) stored in the database. It determines what other objects that program is
dependent on, such as other packages. If a dependent object changes, then all programs that rely
on that object are flagged invalid. The dependent objects are automatically re-compiled the next
time they are called.

Performance Benefits
When one object in a package is referenced for the first time, the entire package (already
compiled and validated) is loaded into the Shared Global Area (SGA) of the database. All other
package elements are thereby made immediately available for future calls to the package.
PL/SQL does not have to keep retrieving program elements from disk each time a new object is
referenced.

In a distributed environment where packages are executed across a local area network,
minimization of network traffic can boost performance.

Package Security
As a PL/SQL object, security on the package is limited to the same principles as the other
objects; grant privileges, object owners, etc. However, by nature, the package can secure the
objects it contains thereby hiding some of the most detailed aspects of your programs.

When you build a package, you decide which of the elements are public (referenced outside the
package) and which are private (available only within the package itself) using the package
specification and the package body. Public objects are defined within the package specification.
Private objects are defined within the package body. So, by defining an object as private, you
can essentially protect the most confidential of business rules.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 131

Section I: Packages

Lesson: Benefits of Packages (Continued)

Easier Application Design

When designing an application, all you need initially is the interface information in the package
specs. You can code and compile a spec without its body. Then, stored subprograms that
reference the package can be compiled as well. You need not define the package body fully until
you are ready to complete the application

Added Functionality

Packaged public variables and cursors persist for the duration of a session. So, they can be shared
by all subprograms that execute in the environment. Also, they allow you to maintain data across
transactions in that session without having to store it in the database

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 132

Section I: Packages

Lesson: Package Structure

Package components
The package consists of two distinct structures:

• The specification or header
Specification (spec for short) is the public interface to your applications; it declares the
types, variables, constants, exceptions, cursors, and subprograms available for use

• The body
The package body implements the package spec. That is, the package body contains the
implementation of every cursor and subprogram declared in the package spec

In functions and procedures, the keyword IS connects the specification to the body of the
subprogram. For a package, the specification and the body are not connected - they are
separate, distinct code structures.

Package Specification
To bundle PL/SQL objects together, declare which components of your package are available to
other applications. In other words, which objects are public, what type of objects they are, and
what parameters are expected when a program unit in the package is called?

CREATE OR REPLACE PACKAGE package_name
IS
[declarations of public variables and types]
[specifications of public cursors]
[specifications of modules (i.e. functions and procedures)]
END [package_name];

CREATE OR REPLACE package general_person IS
 gv_ACTIVITY date := SYSDATE;
 gv_EXCEPTION EXCEPTION;
 CURSOR id_cursor (pi_pidm IN NUMBER)
 RETURN swriden%ROWTYPE;
 CURSOR get_addresses(pi_pidm NUMBER) IS
 SELECT swraddr_atyp_code,swraddr_street_line1,
 swraddr_stat_code, swraddr_zip
 FROM swraddr
 WHERE swraddr_pidm = pi_pidm;
 FUNCTION get_id(pi_pidm IN NUMBER) RETURN VARCHAR2;
END general_person;

 /

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 133

Section I: Packages

Lesson: Package Structure (Continued)

Package Body
Once the specification declares to the database what to expect from your package, you can
decide whether you need to code a package body. Does your specification declare any hidden
cursors? Does your specification declare any functions or procedures? If so, then there is
PL/SQL code which has to be assigned to those objects before they are complete.

The role of the package body is to contain the code behind those objects that require the specific
PL/SQL language constructs.

CREATE OR REPLACE PACKAGE BODY package_name
IS
[declarations of private variables and types]
[specifications of private cursors]
[specifications of private modules (i.e. functions and procedures)]

[BEGIN
 executable statements]
[EXCEPTION
 exception statements]
END [package_name];

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 134

Section I: Packages

Lesson: Package Structure (Continued)

Package Body
CREATE OR REPLACE PACKAGE BODY GENERAL_PERSON
IS

 CURSOR id_cursor(pi_pidm IN NUMBER) RETURN swriden%ROWTYPE IS
 SELECT *
 FROM swriden
 WHERE swriden_pidm = pi_pidm;

 FUNCTION get_id(pi_pidm IN NUMBER) RETURN VARCHAR2 IS
 lv_id swriden.swriden_id%TYPE;
 BEGIN
 SELECT swriden_id
 INTO lv_id
 FROM swriden
 WHERE swriden_change_ind IS NULL
 AND swriden_pidm = pi_pidm;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 'No rows found.';
 WHEN TOO_MANY_ROWS THEN
 RETURN 'Too many rows.';
 WHEN OTHERS THEN
 DECLARE
 lv_err_msg VARCHAR2(200) := SUBSTR(SQLERRM,1,200);
 BEGIN
 RETURN lv_err_msg;
 END;
 END get_id;

END general_person;

/

Note: You cannot compile a package body without a package specification.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 135

Section I: Packages

Lesson: Reference Package Elements and
Cursors

Package Elements - Syntax
To reference one of the public variables in a Package Specificaton use the syntax
package_name.variable_name

IF general_person.gv_activity > '01-JAN-07' THEN
 …
END IF;

Cursors - Syntax
To reference one of the public cursors in a Package Specificaton use the syntax
package_name.cursor_name

OPEN general_person.id_cursor(pi_pidm);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 136

Section I: Packages

Lesson: Unqualified Package Elements

Unqualified elements
When a public package object is referenced within another object in the same package, it does
not require the package name preceding it.

INSERT INTO SWRIDEN
 (___,____,____, swriden_activity_date)
VALUES (____,____, gv_activity);

Data declared at the package level persist for as long as the session is active. However, each
Oracle session has its own private PL/SQL area. This means that if multiple people are calling
the same package, they will have their own set of global variables, cursors, etc.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 137

Section I: Packages

Lesson: Access to Package Elements

Public vs. private data
Allows you to enforce information hiding.

CREATE OR REPLACE PACKAGE general_person IS
 /* Public. Any session can reference it. */
 gv_pidm NUMBER;
END;
/

CREATE OR REPLACE PACKAGE BODY general_person IS
 /* Private. */
 lv_id VARCHAR2(9);
END general_person;
/

Test Cases
DECLARE
 lv_pidm NUMBER(8);
BEGIN
 lv_pidm := general_person.gv_pidm; /* Legal. */
END;

DECLARE
 lv_id VARCHAR2(9);
BEGIN
 lv_id := general_person.lv_id; /* Illegal. lv_id is PRIVATE */
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 138

Section I: Packages

Lesson: Access to Package Elements
(Continued)

Package specification
CREATE OR REPLACE PACKAGE registration_lib
IS
 FUNCTION calc_credit_hours (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE)
 RETURN NUMBER;

 PROCEDURE display_ticket (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE);
END registration_lib;

The package specification declares a package called registration_lib. This package groups
together two modules:

• calc_credit_hours function
• display_ticket procedure

These two modules specifically relate to registration data.

By examining the specification, another programmer can tell exactly how to reference the objects
and what to pass to them.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 139

Section I: Packages

Lesson: Access to Package Elements
(Continued)

Package body

CREATE OR REPLACE PACKAGE BODY registration_lib
IS
 FUNCTION calc_credit_hours (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 RETURN NUMBER
 IS
 lv_total_hours NUMBER (6, 2);
 CURSOR swrregs_cur (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 IS
 SELECT swrregs_crn, swrregs_gpa
 FROM swrregs
 WHERE swrregs.swrregs_pidm = pi_pidm AND
 swrregs.swrregs_term_code = pi_term;
 CURSOR swvcrse_cur (pi_crn IN swvcrse.swvcrse_crn%TYPE)
 IS
 SELECT swvcrse_credit_hours
 FROM swvcrse
 WHERE swvcrse.swvcrse_crn = pi_crn;
 swvcrse_rec swvcrse_cur%ROWTYPE;
 BEGIN
 lv_total_hours := 0;
 FOR swrregs_rec IN swrregs_cur (pi_pidm, pi_term)
 LOOP
 OPEN swvcrse_cur (swrregs_rec.swrregs_crn);
 FETCH swvcrse_cur INTO swvcrse_rec;
 IF swvcrse_cur%FOUND
 THEN
 lv_total_hours := lv_total_hours +
 swvcrse_rec.swvcrse_credit_hours;
 END IF;
 CLOSE swvcrse_cur;
 END LOOP;
 RETURN lv_total_hours;
 END calc_credit_hours;

(continued….)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 140

Example code, continued

 PROCEDURE display_ticket (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 IS
 CURSOR swrregs_cur (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 IS
 SELECT swrregs_crn, swrregs_gpa, swvcrse_desc
 FROM swrregs, swvcrse
 WHERE swrregs_pidm = pi_pidm
 AND swrregs_term_code = pi_term
 AND swvcrse_crn = swrregs_crn;
 BEGIN
 DBMS_OUTPUT.put_line ('CRN DESCRIPTION GPA');
 DBMS_OUTPUT.put_line ('------ ---------------------------- -----');
 FOR swrregs_rec IN swrregs_cur (pi_pidm, pi_term)
 LOOP
 EXIT WHEN swrregs_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE (
 RPAD(swrregs_rec.swrregs_crn, 7, ' ') ||
 RPAD(swrregs_rec.swvcrse_desc, 31, ' ') ||
 swrregs_rec.swrregs_gpa);
 END LOOP;
 END display_ticket;
END registration_lib;
/

Section I: Packages

Lesson: Access to Package Elements
(Continued)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 141

Section I: Packages

Lesson: Synchronize the Specification and
the Body

Synchronization
It is imperative that you keep the package specification synchronized with the body and vice
versa. If you do not, the compiler will generate the following error:

PLS-00232: subprogram 'name' is declared in a package specification
and must be defined in the package body

Common causes of this error include:

• A parameter was added to a procedure or function in the body that has not been added to
the specification

• A parameter was added to a procedure or function in the specification that has not been
added to the body

• The datatype of a parameter changed and now the specification does not match the body

• The name of a parameter changed and now the specification does not match the body

• A new function or procedure was added to the body but the public declaration has not
been added to the specification

• The name of a procedure or function was changed and the specification no longer
matches the body

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 142

Section I: Packages

Lesson: Public vs. Private Data Elements

Problems with redefinition
In the previous example, notice the use of the swrregs_cur cursor. In both the function and the
procedure, the cursor performs the same action; it loads the student registration records for a
given term. If you think about it, there might be a need for several different types of applications
to have access to these records. Do we really want to redefine this cursor repeatedly; taking the
chance that one module will declare the subset of records differently than another?

Public cursor element
Because we have declared the cursors within each of the modules, the cursors are considered
private, meaning that they cannot be referenced anywhere but within the package. This is a nice
feature in some situations, but in this instance, we really want the cursor to be public. Consider
the following modifications to our package specification:

CREATE OR REPLACE PACKAGE registration_lib
IS
 CURSOR swrregs_cur (
 pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 IS
 SELECT swrregs_crn, swrregs_gpa, swvcrse_desc
 FROM swrregs, swvcrse
 WHERE swrregs_pidm = pi_pidm
 AND swrregs_term_code = pi_term
 AND swvcrse_crn = swrregs_crn;
 FUNCTION calc_credit_hours
 (
 pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
)
 RETURN NUMBER;
 PROCEDURE display_ticket
 (
 pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE
);
END registration_lib;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 143

Section I: Packages

Lesson: Public vs. Private Data Elements
(Continued)

Cursor declaration
Notice that the cursor is now declared in the package specification, which means it no longer
needs to be defined within the package body:

CREATE OR REPLACE PACKAGE BODY registration_lib
IS
 CURSOR swvcrse_cur(pi_crn IN swvcrse.swvcrse_crn%TYPE)
 IS
 SELECT swvcrse_credit_hours
 FROM swvcrse
 WHERE swvcrse_crn = pi_crn;

 FUNCTION calc_credit_hours (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE)
 RETURN NUMBER
 IS
 lv_total_hours NUMBER(6,2);

 swvcrse_rec swvcrse_cur%ROWTYPE;

 BEGIN
 lv_total_hours := 0;
 FOR swrregs_rec IN swrregs_cur(pi_pidm,pi_term)
 LOOP
 OPEN swvcrse_cur(swrregs_rec.swrregs_crn);
 FETCH swvcrse_cur INTO swvcrse_rec;
 IF swvcrse_cur%FOUND THEN
 lv_total_hours := lv_total_hours +
 swvcrse_rec.swvcrse_credit_hours;
 END IF;
 CLOSE swvcrse_cur;
 END LOOP;
 RETURN lv_total_hours;
 END calc_credit_hours;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 144

Section I: Packages

Lesson: Public vs. Private Data Elements
(Continued)

Cursor declaration (cont.)

 PROCEDURE display_ticket (pi_pidm IN swriden.swriden_pidm%TYPE,
 pi_term IN swvterm.swvterm_term_code%TYPE)
 IS
 BEGIN
 dbms_output.put_line('CRN DESCRIPTION GPA');
 dbms_output.put_line('------ ------------------------- -----');
 FOR swrregs_rec in swrregs_cur(pi_pidm,pi_term)
 LOOP
 dbms_output.put_line (
 RPAD(swrregs_rec.swrregs_crn, 7, ' ') ||
 RPAD(swrregs_rec.swvcrse_desc, 26, ' ') ||
 swrregs_rec.swrregs_gpa);
 END LOOP;
 END display_ticket;

END registration_lib;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 145

Section I: Packages

Lesson: Public vs. Private Data Elements
(Continued)

Publically declared cursor
Now that the cursor has been declared as public, the modules can use one single format for
retrieving the registration records. Likewise, if the cursor were to change, you would only have
to change it in one place. Additionally, since the cursor is declared public, it is legal to reference
the cursor within any other PL/SQL object external to this package. For instance, if you were
going to build a transcript, you would want to repeat calls to this cursor.

FOR swvterm_rec in swvterm_cur
LOOP
 OPEN registration_lib.swrregs_cur
 (swrregs_pidm,swvterm_rec.swvterm_term_code);
 FETCH registration_lib.swrregs_cur2 INTO local_regis_rec;
 IF registration_lib.swrregs_cur%FOUND THEN
 dbms_output.put_line(local_regis_rec.swrregs_crn ||
 local_regis_rec.swvcrse_desc ||
 local_regis_rec.swrregs_gpa);
 lv_sem_gpa_pts := lv_sem_gpa_pts +
 local_regis_rec.swrregs_gpa;
 END IF;
 CLOSE registration_lib.swrregs_cur2;
END LOOP;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 146

Section I: Packages

Lesson: Do You Really Need the Package
Body?

Package body
Consider this, however; if you only had variables, constants, cursors and exception types
declared in a package specification, would the package body be required? The answer is no,
because the specification has declared to the database that there are no 'incomplete' objects
within the package.

Variables, constants, cursors and exceptions are complete once they are defined within the
declaration section of any PL/SQL block. By building such a package specification you can
make a number of standard variables, constants, cursors and/or exceptions available for use
throughout your applications simply by declaring them once within a package.

CREATE OR REPLACE PACKAGE registration_globals
IS
 gv_max_credit_hours NUMBER(6,2) := 12;
END registration_globals;

IF lv_total_hours > registration_globals.gv_max_credit_hours THEN …

Remember the performance advantages of using packages? Once an object within a package is
referenced, the entire package is loaded into the SGA so that future references to the package do
not require any disk access. If you were to have such a package specification as described
above, any 'global' variables, constants, cursors and/or exception types declared are instantly
accessible as soon as the first reference to 'registration_globals' is made.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 147

Section I: Packages

Lesson: Overloading Packages

Definition
A package can be overloaded, which means that more than one procedure or function has the
same name, but with different parameters. Based on the datatype or number of parameters,
Oracle will be able to deduce which subprogram needs to run.

Example
CREATE OR REPLACE PACKAGE general_person IS
 PROCEDURE get_name (pi_pidm IN NUMBER);
 PROCEDURE get_name (pi_ID IN VARCHAR2);
END general_person;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 148

Section I: Packages

Lesson: Recommendations for Using
Packages

Recommendations
• Do not build related functions and procedures standalone; instead, embed them into a

package where appropriate (grouping related objects together in a package)
• Use consistent and effective coding style
• Overload for smart packages
• Make your programs case-insensitive
• Use packages and public elements to avoid duplication of coding and declarations

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 149

Section I: Packages

Lesson: Security

Subprogram Execution
The security for packages is the same as for Procedures and Functions. To be able to call a
package, procedure, or function that is owned by another user, you have to be granted the
EXECUTE privilege on that stored object. The EXECUTE ANY PROCEDURE system
privilege allows calls to any procedure or function, either standalone or packaged, as well as
public package variables and cursors, but this is a security risk and should be avoided.

To modify a stored subprogram owned by someone else you need the ALTER ANY
PROCEDURE which allows the person to modify ANY procedure owned by ANY user in the
database. This is a very wide open privilege that should not be granted in a production database
to anyone outside of the DBA group since it could result in loss or damage to application code
from either willful or accidental use. It is also a conduit for hackers to access programs and data
that should be kept private.

Access to Objects
One of the quirks of creating stored subprograms is that the person developing the subprogram
needs to have direct grants to the objects being referenced in the subprogram. Those grants
cannot be given through a role.

The person calling the subprogram does not need grants to the objects inside the subprograms.
The subprogram executes under the privileges of the owner of the object; therefore, subprograms
encapsulate security as well – allowing the end user to use the objects references in the
subprograms without having direct access themselves.

(Note: There is a way to run subprograms such that the person executing the program must have
grants to the objects withing the subprogram. This is called Invoker's Rights but is outside the
scope of this course.)

Package Elements
Currently there is no way to grant access to only one component of a package. When the
EXECUTE privilege is granted on a package, the grantee has access to all the public elements of
the package.

To grant access to only one component of a package, create a procedure wrapper that only calls
that one component of the package and then grant EXECUTE on the procedure to the end user.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 150

Section I: Packages

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1

a. Create a package called 'Account' containing both the insert_acct_info procedure and the
calc_amt_owed function created in Section H.

b. Overload the account package, so that there are now two functions are called calc_amt_owed.
The second function should accept the parameters of pidm and term code, and return the sum
of the amount owed for that term code.

c. Use what you have learned to add to the exception handler for the insert_acct_info procedure,
so that the message displayed indicates the nature of the error (i.e. incorrect parameters).

d. Execute the procedure and both functions from the package.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 151

Section J: Built-In Packages

Lesson: Overview

Introduction
Oracle has provided several built-in packages to enhance the use of PL/SQL. Built-in packages
can allow you to

• send messages between sessions connected to the same database
• provide PL/SQL equivalents for some DDL statements
• allow scheduling of PL/SQL procedures
• provide screen output in SQL*Plus or SQL Developer
• manipulate large objects

Objectives
This section will examine the following:

• Built-in packages provided by Oracle that enhance PL/SQL

Section contents
Overview ..151
Oracle Built-In Packages..152
DBMS_LOB...154
DBMS_RANDOM...162
DBMS_OUTPUT...165
DBMS_SESSION ..167
SYS_CONTEXT ..170
DBMS_SCHEDULER ...171
Self Check ..181

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 152

Section J: Built-In Packages

Lesson: Oracle Built-In Packages

Built-in packages
Now that you can realize how to take advantage of packages in your own development
environments, consider the following. Oracle thought that packages were pretty handy as well.
In fact, some of the reserved words that you use in the Oracle SQL environment such as DESC
and DICT are elements of a package called STANDARD. After several suggestions from the
legions of Oracle developers out there, Oracle put together a special set of built-in packages to
accommodate for some shortcomings and prevent users from having to build common
functionality from scratch.

We will examine a few of these built-in packages in this section. Other built-ins are examined in
the remaining sections of this course.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 153

Section J: Built-In Packages

Lesson: Oracle Built-In Packages (continued)

Partial list
The following is a partial list of built-in packages provided by Oracle. Most of these are
installed by default when you create a database instance, but in some cases you may have to
grant execute privileges to make them available to the user community.

For a complete list of these packages, refer to the Oracle documentation.

Package
Name

Description

dbms_alert Provides support for notification of database events on an asynchronous
basis. Registers a process with an alert and then waits for a signal from
that alert.

dbms_
crypto

Lets you encrypt and decrypt stored data, can be used in conjunction with
PL/SQL programs running network communications, and supports
encryption and hashing algorithms.

dbms_ddl Provides a programmatic access to some of the SQL DDL statements.
dbms_
debug

Implements server-side debuggers and provides a way to debug server-
side PL/SQL program units.

dbms_fga Provides fine-grained access security functions.
dbms_job Used to submit and manage regularly scheduled jobs for execution inside

the database.
dbms_lob Provides general purpose routines for operations on Oracle Large Object

(LOBs) datatypes - BLOB, CLOB (read/write), and BFILEs (read-only).
dbms_
logminer

Provides functions to mine archive logs.

dbms_
metadata

Routines to extract database object definitions from the data dictionary.

dbms_
output

Displays output from PL/SQL programs to the terminal. The “lowest
common denominator” debugger mechanism for PL/SQL code.

dbms_pipe Allows communication between different Oracle sessions through a pipe
in the RDBMS shared memory. One of the few ways to share memory-
resident data between Oracle sessions.

dbms_
scheduler

Collection of scheduling functions for running scheduled processes.

utl_file Allows PL/SQL programs to read from and write to operating system
files.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 154

Section J: Built-In Packages

Lesson: DBMS_LOB

Description
Provides a way to use read and manipulate large objects (BLOB, CLOB) as well as read only
access to BFILEs. A selection of the operations in the package is presented below.

OPEN
DBMS_LOB.OPEN (lob_loc IN OUT NOCOPY BLOB,

 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (file_loc IN OUT NOCOPY BFILE,

 open_mode IN BINARY_INTEGER := file_readonly);

Parameters

Parameter Value
Loc_loc/File_loc Name or location of LOB
Open_mode Mode in which to open LOB:

LOB_READONLY or LOB_READWRITE for CLOB/BLOB
FILE_READONLY for BFILE

Notes
• It is not mandatory but recommended that LOBs are explicitly opened and closed

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 155

Section J: Built-In Packages

Lesson: DBMS_LOB (continued)

ISOPEN
Check to see whether a LOB is open before closing.

DBMS_LOB.ISOPEN (lob_loc IN BLOB) RETURN INTEGER;

DBMS_LOB.ISOPEN (lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

DBMS_LOB.ISOPEN (file_loc IN BFILE) RETURN INTEGER;

Parameters

Parameter Value
Loc_loc/file_loc Name or location of LOB

CLOSE
DBMS_LOB.CLOSE (lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.CLOSE (lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

DBMS_LOB.CLOSE (file_loc IN OUT NOCOPY BFILE);

Parameters

Parameter Value
Loc_loc/file_loc Name or location of LOB

Notes
• All open LOBs for the transaction must be closed before issuing a commit or rollback
• If you commit before closing a LOB the LOB is updated but associated indexes are not

rendering them invalid.
• When the LOB is closed, the associated indexes are updated.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 156

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

WRITE
This procedure writes data to an internal LOB from a buffer. This procedure will overwrite any
existing data in the LOB. To add to an existing LOB, use the APPEND procedure.

DBMS_LOB.WRITE (lob_loc IN OUT NOCOPY BLOB,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITE (lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameter Value

Loc_loc Name or location of LOB
Amount Number of bytes or characters to be written
Offset Starting point in bytes or characters (Default=1)
Buffer Data to be stored

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 157

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

APPEND
DBMS_LOB.APPEND (dest_lob IN OUT NOCOPY BLOB,

 src_lob IN BLOB);

DBMS_LOB.APPEND (dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);

Parameters

Parameter Value
Dest_lob Locator of the interal LOB where the data will be

appended.
Src_lob Locator of the interal LOB serving as the source to

be appended.

Notes
Applies to internal LOBs (column in a table) only, and not to external or BFILE LOBs.

You are not required to explicitly OPEN and CLOSE the LOB before appending. However, for
performance reasons, it is recommended if you will be doing multiple operations on a LOB.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 158

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

COPY
Copy all or part of the contents of one internal LOB to another internal LOB.

DBMS_LOB.COPY (dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

DBMS_LOB.COPY (dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,

 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameter Value

Dest_lob Locator of the interal LOB where the data will be
copied.

Src_lob Locator of the interal LOB serving as the source
to be copied.

Amount Number of bytes or characters to copy
Dest_offset Offset location to put the copy
Src_offset Offset location to get the copy

GETLENGTH
Obtain the length in bytes or characters of a LOB

DBMS_LOB.GETLENGTH (lob_loc IN BLOB) RETURN INTEGER;

DBMS_LOB.GETLENGTH (lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (file_loc IN BFILE) RETURN INTEGER;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 159

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

ERASE
Clear all or part of an internal LOB.

DBMS_LOB.ERASE (lob_loc IN OUT NOCOPY BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

DBMS_LOB.ERASE (lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,

 offset IN INTEGER := 1);

Parameter Value
Lob_loc Locator of the interal LOB.
Amount Number of bytes or characters to erase
Offset Starting location to Erase

Notes
Erase does not reclaim the space used by the data that was erased. To reclaim the space use the
TRIM operator.

TRIM
DBMS_LOB.TRIM (lob_loc IN OUT NOCOPY BLOB,

 newlen IN INTEGER);

DBMS_LOB.TRIM (lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 newlen IN INTEGER);

Parameter Value

Lob_loc Locator of the interal LOB.
Newlen New length in bytes or characters

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 160

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

INSTR
Returns the position of the nth occurrence of the pattern starting at the specified offset.

DBMS_LOB.INSTR (lob_loc IN BLOB,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1) RETURN INTEGER;

DBMS_LOB.INSTR (lob_loc IN CLOB CHARACTER SET ANY_CS,

 pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1) RETURN INTEGER;

DBMS_LOB.INSTR (file_loc IN BFILE,

 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1) RETURN INTEGER;

SUBSTR
Return the amount of bytes or characters from the LOB starting at the offset.

DBMS_LOB.SUBSTR (lob_loc IN BLOB,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1) RETURN RAW;

DBMS_LOB.SUBSTR (lob_loc IN CLOB CHARACTER SET ANY_CS,

 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

DBMS_LOB.SUBSTR (file_loc IN BFILE,
 amount IN INTEGER := 32767,

 offset IN INTEGER := 1) RETURN RAW;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 161

Section J: Built-In Packages

Lesson: DBMS_LOB (Continued)

Initializing LOBs
When inserting rows into a table with a LOB value, the LOB column must be initialized You
can initialize a BLOB column value by using the built-in function EMPTY_BLOB(). A CLOB
or NCLOB column value can be initialized by using the built-in function EMPTY_CLOB().

EMPTY_BLOB();
EMPTY_CLOB():

DBMS_LOB Examples
create table my_lob_table (lob_row_number number(3),
 lob_column CLOB);

SQL> INSERT into my_lob_table values (3,empty_clob());

DECLARE
 lv_lob_holder CLOB;
 lv_lob_size NUMBER;
 lv_lob_buffer VARCHAR2(4000);
BEGIN
 lv_lob_buffer := 'To Be Or Not To Be, That Is The Question';
 lv_lob_size := length(lv_lob_buffer);
 DBMS_OUTPUT.put_line('Buffer size: ' || lv_lob_size);

 SELECT lob_column
 INTO lv_lob_holder
 FROM my_lob_table
 WHERE lob_row_number = 3 FOR UPDATE;

 DBMS_LOB.WRITE(lv_lob_holder,lv_lob_size,1,lv_lob_buffer);
 lv_lob_size := DBMS_LOB.GETLENGTH(lv_lob_holder);

 DBMS_OUTPUT.put_line('LOB size: ' || lv_lob_size);
 COMMIT;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 162

Section J: Built-In Packages

Lesson: DBMS_RANDOM

Description
This package can calculate either random numbers in the range -2^31 to 2^31 or between 0 and 1
with 38 digits of precision. It can also be used to generate random string values. This should not
be used to generate encryption keys – use DBMS_CRYPTO for security encryption.

NORMAL
Return a number in the normal distribution (-2^31 to 2^31).

 DBMS_RANDOM.NORMAL RETURN NUMBER;

SQL> select dbms_random.normal from dual;

 NORMAL

1.07677152

SEED
Setup the SEED value from which the random number will be generated. You can generate the
same 'random' numbers for testing by using the same seed values in DBMS_RANDOM.SEED.
If you don't 'SEED' the generator, Oracle will supply a default seed value.

DBMS_RANDOM.SEED (seed IN BINARY_INTEGER);
DBMS_RANDOM.SEED (seed IN VARCHAR2);

Characters can be up to 2000 in length.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 163

Section J: Built-In Packages

Lesson: DBMS_RANDOM (Continued)

STRING
Returns a random character string up to 4000 characters in length.

DBMS_RANDOM.STRING (opt IN CHAR,
 len IN NUMBER) RETURN VARCHAR2;

Parameters
Parameter Value

Opt Specifies what the returning string looks like:
■ 'u' or 'U' – returns uppercase alpha characters
■ 'l' or 'L' – returns lowercase alpha characters
■ 'a' or 'A' – returns mixed case alpha characters
■ 'x' or 'X' – returns uppercase alpha-numeric
■ 'p' or 'P' – returns any printable characters.
Default is uppercase alpha characters.

Len Length of the return string

Examples
SQL> select dbms_random.string('X',10) from dual;

DBMS_RANDOM.STRING('X',10)

47C2FZNLF3

SQL> select dbms_random.string('P',10) from dual;

DBMS_RANDOM.STRING('P',10)

R*:2&:XOc>

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 164

Section J: Built-In Packages

Lesson: DBMS_RANDOM (Continued)

VALUE
Generates a number between 0 and 1 with 38 digits of precision or between a low and high
specified value. Note: random number can be either the low or high value.

DBMS_RANDOM.VALUE RETURN NUMBER;

DBMS_RANDOM.VALUE(low IN NUMBER,
 high IN NUMBER) RETURN NUMBER;

SQL> select dbms_random.value(4,4000) from dual;

DBMS_RANDOM.VALUE(4,4000)

 3920.69794

SQL> select dbms_random.value from dual;

DBMS_RANDOM.VALUE
--
0.94490715852021413933872254210781924839

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 165

Section J: Built-In Packages

Lesson: DBMS_OUTPUT

Description
The built-in package DBMS_OUTPUT is used to send output to the screen (or a file when used
in a script). For the package to be enabled, you first must enter the following at the SQL prompt:

SET SERVEROUTPUT ON

You can also put this into your profile (login.sql) so that SERVEROUTPUT is on whenever you
enter SQL*Plus.

The same can be accomplished when using SQL Developer by clicking on the DBMS Output
tab, then on the Enable button:

Within a program, you must initially enable DBMS_OUTPUT using the ENABLE procedure:

DBMS_OUTPUT.ENABLE;

Available procedures
The following procedures are available to you for output:

Function/Procedure Description
ENABLE Enable message output
DISABLE Disable message output
PUT_LINE Place a line in the buffer
PUT Place a partial line in the buffer
NEW_LINE Terminate a line created with PUT
GET_LINE Retrieve one line of information from

buffer
GET_LINES Retrieve array of lines from buffer

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 166

Section J: Built-In Packages

Lesson: DBMS_OUTPUT (Continued)

Example
/*Handles the invalid session error differently from all other
errors. Is not already predefined, so must be declared. */
DECLARE
 invalid_session EXCEPTION;
 PRAGMA EXCEPTION_INIT (invalid_session, -22);
 lv_sqlcode NUMBER;
 lv_sqlerrm CHAR(55);
BEGIN
 DBMS_OUTPUT.ENABLE;
 INSERT INTO swriden (swriden_pidm, swriden_id, swriden_last_name,
 swriden_activity_date)
 VALUES (1234, '56', 'Peterson',SYSDATE);
EXCEPTION
 WHEN invalid_session THEN
 DBMS_OUTPUT.PUT_LINE('Invalid session ID. Access
 Denied. Contact Information Services at 123-4567');
 WHEN OTHERS THEN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1, 55);
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE(lv_sqlcode||' '||lv_sqlerrm);
END;
/

Note: You can also use the DBMS_OUTPUT package for basic reports, though the package was
not created with this intention.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 167

Section J: Built-In Packages

Lesson: DBMS_SESSION

Description
This package has many useful functions. The ones presented here can be used for debugging as
well as security.

SET_ROLE
Calling DBMS_SESSION.SET_ROLE is equivilant to issuing the command 'alter session set
role…;'. It can be used in applications like Oracle Forms to enable a role for a particular form
that may differ from other forms. Banner uses this command to invoke the role assigned to a
user through GSASECR when each Oracle Form is opened.

DBMS_SESSION.SET_ROLE (role_cmd VARCHAR2);

The role_cmd parameter is the name of the role being invoked. It may also include the password
to invoke a password protected role.

SET_CONTEXT
The procedure sets context or application-defined attributes about a session that can be used in
programs and processes to take action based on that information. For example, in Banner it is
used in Fined Grained Access to set attributes about a session which determine what security that
session is allowed on certain objects. Once these values have been set for a session they can be
accessed via another built-in called SYS_CONTEXT and used to take certain actions as well as
deny or allow access to data.

DBMS_SESSION.SET_CONTEXT (namespace VARCHAR2,
 attribute VARCHAR2,
 value VARCHAR2,
 username VARCHAR2,
 client_id VARCHAR2);

Parameter Description
Namespace Name of a related group of attributes (maxsize 30)
Attribute Name of the parameter being set (maxsize 30)
Value Value of the parameter or attribute (maxsize 4k)
Username For a Global Namespace, compared to the current

database user. Default = NULL
Client_id For a Global Namespace, compared to the current

database user's internal ID. Default = NULL

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 168

Section J: Built-In Packages

Lesson: DBMS_SESSION (Continued)

Example (from package GOKFGAC)
FUNCTION f_query_predicate (
 p_objectname VARCHAR2,
 p_crud VARCHAR2,
 p_fgac_user VARCHAR2)
 RETURN VARCHAR2 IS

 l_predicate VARCHAR2(4000);
 l_schema VARCHAR2(30) := '';
 d_ctx VARCHAR2(4000);
 lv_pii_cnt NUMBER := 0;
 begin

 -- clear the saved predicate so the same result isnt viewed over and over
 CASE p_crud
 WHEN D_INS then
 d_ctx := 'ctx_fg_' || LOWER(p_objectname) || '_ins';
 WHEN D_UPD then
 d_ctx := 'ctx_fg_' || LOWER(p_objectname) || '_upd';
 WHEN D_DEL then
 d_ctx := 'ctx_fg_' || LOWER(p_objectname) || '_del';
 WHEN D_SEL then
 d_ctx := 'ctx_fg_' || LOWER(p_objectname) || '_sel';
 ELSE
 d_ctx := 'ctx_fg_' || LOWER(p_objectname) || '_sel';
 END CASE;
 dbms_session.set_context('g$_vbsi_context',d_ctx, '');

 query_user := p_fgac_user;

 l_predicate := gokfgac.f_common_predicate (l_schema ,
 p_objectname,
 p_crud ,
 p_fgac_user);

 -- reset if its a pii table
 SELECT NVL(COUNT(*),0) INTO lv_pii_cnt FROM gorfdpi
 WHERE gorfdpi_table_name = p_objectname;
 IF lv_pii_cnt > 0 THEN
 gokfgac.p_get_user_info(gb_common.f_sct_user) ;
 END IF;
 -- reset saved predicate
 dbms_session.set_context('g$_vbsi_context',d_ctx, '');

 IF l_predicate = NULL_PRED THEN
 RETURN (NULL);
 ELSE
 RETURN l_predicate;
 END IF;
END f_query_predicate;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 169

Section J: Built-In Packages

Lesson: DBMS_SESSION (Continued)

Other CONTEXT Related
Other useful processes inside the package controlling the setting or removing of CONTEXT
information include:

DBMS_SESSION.CLEAR_ALL_CONTEXT (namespace VARCHAR2);

DBMS_SESSION.CLEAR_CONTEXT (namespace VARCHAR2,
 client_identifier VARCHAR2
 attribute VARCHAR2);

For listing the values of a Context:

TYPE AppCtxRecTyp IS RECORD (namespace VARCHAR2(30),
 attribute VARCHAR2(30),
 value VARCHAR2(256));

TYPE AppCtxTabTyp IS TABLE OF AppCtxRecTyp INDEX BY BINARY_INTEGER;

DBMS_SESSION.LIST_CONTEXT (list OUT AppCtxTabTyp,
 size OUT NUMBER);

SET_SQL_TRACE
This is equivalent to issuing the command 'alter session set sql_trace = true/false;'. It creates a
trace file in the database UDUMP directory for the session (the OS Process ID is included in the
name of the trace file) and writes tracing information on all SQL executed between the time trace
is turned on until it is turned off. It can be used for debugging purposes to trace sections of code.

DBMS_SESSION.SET_SQL_TRACE (sql_trace boolean);

Parameter Description
Sql_trace TRUE to turn on; FALSE to turn off

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 170

Section J: Built-In Packages

Lesson: SYS_CONTEXT

Description
SYS_CONTEXT is a built-in function that returns information about the value of an attribute in
a namespace. It can be used to obtain information on a default namespace called USERENV or
from an application defined namespace.

Example
CONNECT HRISUSR/U_PICK_IT
SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')
--
HRISUSR

Common Attributes for USERENV
(Refer to SQL Reference Manual for a complete list)

Attribute Description
Action Current action session is taking (e.g. SELECT,

INSERT, UPDATE, EXECUTE)
DB_Domain Domain of database
DB_Name Name of database
Host Host name of the client's machine
Instance_name Name of instance connected (RAC)
IP_Address IP address of the client's machine
Language Language settings for session (territory.characterset)
NLS_Date_Format Date format for the session
OS_User Name user authenticated to their machine
Session_User Name user authenticated to the database
SID Session ID in database for user

SQL> select sys_context('userenv','language') from dual;

SYS_CONTEXT('USERENV','LANGUAGE')

AMERICAN_AMERICA.WE8MSWIN1252

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 171

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER

Description (10g+)
This package allows you to schedule processes to run at certain intervals or based on events. A
selection of the procedures in the package is show here. Jobs can even be chained together to
provide a dependent set of processes. For a full list consult the PL/SQL Reference Manual.

This is replacing DBMS_JOB which is still available for backward compatibility.

CREATE_PROGRAM
This procedure creates a process that will run under the scheduler. It will not run until it is
associated with a schedule using the CREATE_JOB procedure.

DBMS_SCHEDULER.CREATE_PROGRAM (program_name IN VARCHAR2,
 program_type IN VARCHAR2,
 program_action IN VARCHAR2,

number_of_arguments IN PLS_INTEGER DEFAULT 0,
enabled IN BOOLEAN DEFAULT FALSE,
comments IN VARCHAR2 DEFAULT NULL);

Parameter Description

Program_name User supplied name; cannot be same as another object in
user's schema

Program_type Options:
• PLSQL_BLOCK – anonymous block you specify
• STORED_PROCEDURE – PL/SQL or Java stored

procedure or C program; Functions and procedures
with OUT or INOUT not allowed

• EXECUTABLE – external program available from
O/S command line

Program_action For PLSQL_BLOCK – the actual anonymous block
including BEGIN and END, ending in a semicolon (;)
For STORED_PROCEDURE – name of the stored
procedure including schema if applicable
For EXECUTABLE – executable name including full
path and any arguments

Number_of_arguments Default = 0, max = 255; ignored for PLSQL_BLOCK
Enabled Default=False; can be enabled with ENABLE

procedure; must be enabled to run
Comments User supplied description of program

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 172

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Permissions
• The user must have been granted CREATE JOB privilege to run this procedure.
• For another user to execute your job they must have EXECUTE privilege on the job.

Example

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'plsql_block_program',
 program_type => 'PLSQL_BLOCK',
 program_action =>
 'BEGIN
 INSERT INTO TEMP (col1, col3, message)
 (SELECT COUNT(*), SYSDATE,
 ''Swriden record count'' FROM TRAIN01.SWRIDEN);
 END;',
 enabled => TRUE,
 comments => 'Program to track growth of swriden table');
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 173

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

CREATE_SCHEDULE
This procedure creates a job schedule that is independent of any single job. It can be used for
multiple jobs and provides and easy mechanism to change schedules for multiple jobs at one
time for all jobs assigned the schedule.

DBMS_SCHEDULER.CREATE_SCHEDULE (
schedule_name IN VARCHAR2,
start_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
repeat_interval IN VARCHAR2,
end_date IN TIMESTAMP WITH TIMEZONE DEFAULT NULL,
comments IN VARCHAR2 DEFAULT NULL);

Parameter Description

Schedule_name User supplied name; cannot be same as another object in
user's schema

Start_date Date to start schedule; Can be omitted for repeating
schedules and is, therefore, derived from the interval

Repeat_interval How often schedule should repeat **
End_date Date schedule will stop running; blank = forever
Comments User supplied description of the schedule

** See below for Interval Syntax

Privileges
This procedure requires the CREATE JOB privilege to run. Schedules are created with PUBLIC
privileges and therefore, can be used by anyone once created.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 174

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Schedule Interval Syntax (partial listing)
regular_schedule = frequency_clause
[";" interval_clause] [";" bymonth_clause] [";" byweekno_clause]
[";" byyearday_clause] [";" bydate_clause] [";" bymonthday_clause]
[";" byday_clause] [";" byhour_clause] [";" byminute_clause]
[";" bysecond_clause]

frequency_clause = "FREQ" "=" (predefined_frequency | user_defined_frequency)

predefined_frequency = "YEARLY" | "MONTHLY" | "WEEKLY" | "DAILY" |
"HOURLY" | "MINUTELY" | "SECONDLY"

interval_clause = "INTERVAL" "=" [1 through 999]
bymonth_clause = "BYMONTH" "=" monthlist

monthlist = monthday ("," monthday)*
month = numeric_month | char_month
numeric_month = 1 | 2 | 3 ... 12
char_month = "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" |"JUL" | "AUG" |
"SEP" | "OCT" | "NOV" | "DEC"

byweekno_clause = "BYWEEKNO" "=" weeknumber_list
weeknumber_list = weeknumber ("," weeknumber)*
weeknumber = [minus] weekno
weekno = 1 through 53

byyearday_clause = "BYYEARDAY" "=" yearday_list
yearday_list = yearday ("," yearday)*
yearday = [minus] yeardaynum
yeardaynum = 1 through 366

bydate_clause = "BYDATE" "=" date_list
date_list = date ("," date)*
date = [YYYY]MMDD

bymonthday_clause = "BYMONTHDAY" "=" monthday_list
monthday_list = monthday ("," monthday)*
monthday = [minus] monthdaynum
monthdaynum = 1 through 31

byday_clause = "BYDAY" "=" byday_list
byday_list = byday ("," byday)*
byday = [weekdaynum] day
weekdaynum = [minus] daynum
daynum = 1 through 53 /* if frequency is yearly */
daynum = 1 through 5 /* if frequency is monthly */
day = "MON" | "TUE" | "WED" | "THU" | "FRI" | "SAT" | "SUN"

byhour_clause = "BYHOUR" "=" hour_list
hour_list = hour ("," hour)*
hour = 0 through 23

byminute_clause = "BYMINUTE" "=" minute_list
minute_list = minute ("," minute)*
minute = 0 through 59

bysecond_clause = "BYSECOND" "=" second_list
second_list = second ("," second)*
second = 0 through 59

In calendaring syntax, * means 0 or more.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 175

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Schedule Interval Syntax (Continued)
Bold items from above are explained in more detail in cases where their definition may not be
obvious.

Parameter Description
INTERVAL How often recurrence repeats. (e.g. 1 = every second

for secondly, every day for daily, etc.)
BYWEEKNO Only valid for YEARLY. Week of the year following

the ISO-8601 standard where a week starts on Monday
and ends on Sunday. Part of week 1 may be in a
previous year and part of week 52/53 might be in a
following year.

Negative numbers are valid “[minus] weekno”.
Indicates weeks back from the end of the year.

BYYEARDAY Day of the year. Takes into account leap years. Can be
negative – days back from the end of the year.

BYMONTHDAY Day of the month. Can be negative – days back from
the last day of the month (e.g. -1 = last day of the
month; -3 = third to the last day of the month).

Examples
DBMS_SCHEDULER.create_schedule (
 schedule_name => 'hourly_schedule',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'freq=hourly; byminute=0',
 end_date => NULL,
 comments => 'Repeats hourly, on the hour, forever.');

DBMS_SCHEDULER.create_schedule (
 schedule_name => 'monthly_schedule',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'freq=monthly; bymonthday=-1',
 end_date => NULL,
 comments => 'Repeats monthly, on the last day of the
month, forever.');

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 176

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

CREATE_JOB
This is an overloaded procedure which can be called to create a wholly independent job or to
combine predefined programs and schedules into a running job. Jobs can be based on a schedule
or on an event. Refer to the PL/SQL Reference Manual for information on creating jobs based
on events.

Syntax
Creates a job in a single call without using an existing program or schedule:
DBMS_SCHEDULER.CREATE_JOB (

job_name IN VARCHAR2,
job_type IN VARCHAR2,
job_action IN VARCHAR2,
number_of_arguments IN PLS_INTEGER DEFAULT 0,
start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
repeat_interval IN VARCHAR2 DEFAULT NULL,
end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto_drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL);

Creates a job using a named schedule object and a named program object:
DBMS_SCHEDULER.CREATE_JOB (

job_name IN VARCHAR2,
program_name IN VARCHAR2,
schedule_name IN VARCHAR2,
job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto_drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL);

Creates a job using a named program object and an inlined schedule:
DBMS_SCHEDULER.CREATE_JOB (

job_name IN VARCHAR2,
program_name IN VARCHAR2,
start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
repeat_interval IN VARCHAR2 DEFAULT NULL,
end_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto_drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 177

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Creates a job using a named schedule object and an inlined program:
DBMS_SCHEDULER.CREATE_JOB (

job_name IN VARCHAR2,
schedule_name IN VARCHAR2,
job_type IN VARCHAR2,
job_action IN VARCHAR2,
number_of_arguments IN PLS_INTEGER DEFAULT 0,
job_class IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
enabled IN BOOLEAN DEFAULT FALSE,
auto_drop IN BOOLEAN DEFAULT TRUE,
comments IN VARCHAR2 DEFAULT NULL);

Parameter Description

Job_name User supplied name of the job. Used to stop/start job.
Job_type • PLSQL_BLOCK – anonymous block you specify

• STORED_PROCEDURE – PL/SQL or Java stored
procedure or C program; Functions and procedures
with OUT or INOUT not allowed

• EXECUTABLE – external program available from
O/S command line

• CHAIN – part of a chain of jobs
Job_action For PLSQL_BLOCK – the actual anonymous block

including BEGIN and END, ending in a semicolon (;)
For STORED_PROCEDURE – name of the stored
procedure including schema if applicable
For EXECUTABLE – executable name including full
path and any arguments
For CHAIN – name of a chain object

Num_of_arguments Number of arguments passed to job (between 0 and
255). Not available for job_type CHAIN.

Program_name Name of program created with CREATE_PROGRAM
Start_date Date to start schedule; Can be omitted for repeating

schedules and is, therefore, derived from the interval
Repeat_interval How often schedule should repeat (see above for syntax)
Schedule_name Name of schedule created with CREATE_SCHEDULE
End_date Date job will stop running. The job becomes disabled.
Comments User supplied description of job
Enabled Default=False; can be enabled with ENABLE

procedure; must be enabled to run
Auto_drop Should the job be dropped when end_date or last

iteration reached? Default=False.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 178

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Permissions
The user must have the CREATE JOB system privilege to execute this procedure. In addition, if
the job_type is EXTERNAL the user must have CREATE EXTERNAL JOB permission for the
job to be enabled and/or run.

Examples
DBMS_SCHEDULER.create_job (
 job_name => 'count_swriden_job',
 program_name => 'plsql_block_program',
 schedule_name => 'monthly_schedule',
 enabled => TRUE,
 comments => 'Job using existing program and schedule.');

 DBMS_SCHEDULER.create_job (
 job_name => 'test_program_schedule_job',
 job_type => 'stored_procedure',
 job_action => 'sp_my_procedure',
 number_of_arguments => 1,
 schedule_name => 'hourly_schedule',
 enabled => FALSE,
 comments => 'Job using inline program and schedule.');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name => 'test_program_schedule_job',
 argument_position => 1,
 argument_value => 'SYSDATE');
 DBMS_SCHEDULER.ENABLE (
 name => 'test_program_schedule_job');

DBMS_SCHEDULER.create_job (
 job_name => 'self_contained_job',
 job_type => 'EXECUTABLE',
 job_action => '/app/oracle/scripts/monthly_job.sh',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'freq=monthly; bymonthday=15',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Job created with inline code and schedule');

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 179

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Other Procedures
Procedures in the DBMS_SCHEDULER package that start, stop, and drop scheduled items.

Disable
DBMS_SCHEDULER.DISABLE (name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

If force is set to FALSE and the job is currently running, an error is returned.
If force is set to TRUE, the job is disabled, but the currently running instance is
allowed to finish.

Enable
DBMS_SCHEDULER.ENABLE (name IN VARCHAR2);

Name can be a comma separated list of names.

Drop Job
DBMS_SCHEDULER.DROP_JOB (job_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

If force is set to FALSE, and the job is running, the call results in an error.
If force is set to TRUE, the Scheduler first attempts to stop the running job (by issuing the
STOP_JOB call with the force flag set to false), and then drops the job.

Drop Program
DBMS_SCHEDULER.DROP_PROGRAM (program_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

If force is set to FALSE, the program cannot be referenced by any other job, otherwise an
error will occur.
If force is set to TRUE, all jobs referencing the program are disabled before dropping the
program.
Running jobs that point to the program are not affected by the DROP_PROGRAM call, and
are allowed to continue.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 180

Section J: Built-In Packages

Lesson: DBMS_SCHEDULER (continued)

Drop Schedule
DBMS_SCHEDULER.DROP_SCHEDULE (schedule_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

If force is set to FALSE, the schedule cannot be referenced by any other job, otherwise an
error will occur.
If force is set to TRUE, any jobs that use this schedule will be disabled before the schedule
is dropped
Running jobs and open windows that point to the schedule are not affected.

Run Job
Use to run a job immediately. If use_current_session is FALSE and scheduled job is running
run_job will fail.

DBMS_SCHEDULER.RUN_JOB (job_name IN VARCHAR2,
use_current_session IN BOOLEAN DEFAULT
TRUE);

Stop Job
Stop a running job. Using the 'force' option requires the system privilege MANAGE
SCHEDULER.

DBMS_SCHEDULER.STOP_JOB (job_name IN VARCHAR2
 force IN BOOLEAN DEFAULT FALSE);

Dictionary Tables
USER_SCHEDULER_JOBS
USER_SCHEDULER_JOB_ARGS
USER_SCHEDULER_JOB_LOG
USER_SCHEDULER_JOB_RUN_DETAILS
USER_SCHEDULER_RUNNING_JOBS

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 181

Section J: Built-In Packages

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Write a script that generates a random number and a random string. Use the package
DBMS_RANDOM to generate the values and DBMS_OUTPUT to display them.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 182

Section J: Built-In Packages

Lesson: Self Check (continued)

Exercise 2
Write a script to use the SYS_CONTEXT built in and at least 3 of the attributes to display
information about your session. Display those values using DBMS_OUTPUT.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 183

Section J: Built-In Packages

Lesson: Self Check (continued)

Exercise 3
Create a table with a CLOB column and an Identifier column. Insert a row into the table using
the EMPTY_CLOB() built in.

Write a string to the CLOB record you just created. Append the same value to that CLOB.
Show the length of the LOB after the write and append.

Run your procedure again. What happens to the length and why?

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 184

Section K: Database Triggers

Lesson: Overview

Introduction
Database triggers are similar to stored procedures and functions in the fact that they are written
with PL/SQL code, and are stored within the database. However, database triggers are "fired"
due to a database event, rather than being explicitly called from a PL/SQL block.

Objectives
This section will examine the following:

• The different types of trigger events
• Restrictions on triggers
• View trigger code
• Drop or disable a trigger

Section contents
Overview ..184
Trigger Events ..185
Old and New in Row-Level Triggers ...187
Restrictions on Triggers ...188
Autonomous Transactions..190
The WHEN Clause...192
Viewing Stored Trigger Code ..193
Viewing Stored Trigger Errors...195
Remove Triggers ..197
Order of Trigger Firing...198
Instead-of Triggers ...201
Self Check ..202

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 185

Section K: Database Triggers

Lesson: Trigger Events

Triggers
A trigger can be associated with a Table, View, or Event. We will be working primarily with
Table triggers in this section. Table triggers can be fired just before or after inserts, updates, and
deletes on a table. In addition, the triggers can fire for each row, or each statement.

Capabilities
Triggers can be used to provide any of the following sample functionality:

• Write historical data to history tables
• Write audit records
• Compute values for columns
• Assign system level values to columns (sysdate, user, data source, sequence values)
• Prevent invalid data from entering database (start_date > end_date)
• Prevent unauthorized data changes
• Restrict table access to business hours
• Update associated tables
• Enforce business rules that cannot be accomplished through referential integrity

Syntax
CREATE [OR REPLACE] TRIGGER trigger_name
 { BEFORE | AFTER } triggering_event
 ON table_reference
 [FOR EACH ROW [WHEN trigger_condition]]
 trigger_body;

Parameter Description

Trigger_name User supplied name of trigger
Triggering_event Insert, Update, Delete, Instead of (views)
Table_reference Name of table or view
Trigger_condition Condition under which trigger fires (e.g. salary > 50000)
Trigger_body Standard PL/SQL code

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 186

Section K: Database Triggers

Lesson: Trigger Events (continued)

Statement vs Row
A table trigger can fire once per event (statement level) or once per row affected by the event
(row level). A statement level trigger would only execute its code once regardless of how many
rows were inserted, updated, or deleted. A row level trigger executes its code for each row
affected by the insert, update, or delete.

A statement level trigger is created by default. To create a row level tigger, add the FOR EACH
ROW clause to the trigger creation syntax.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 187

Section K: Database Triggers

Lesson: Old and New in Row-Level Triggers

Handling :OLD and :NEW
A row-level trigger fires once per row processed by the triggering statement. Within the trigger,
you can access the old and new values of the row that is currently being processed. This is
accomplished by referencing the fields of the pseudo-records :OLD and :NEW. These values are
used as bind variables that are populated when the trigger is executed.

The datatype of each pseudo-record is as follows:
triggering_table%ROWTYPE;

Example using :OLD:
CREATE OR REPLACE TRIGGER update_swriden
 AFTER UPDATE ON swriden
 FOR EACH ROW
BEGIN
 INSERT INTO swriden_history
 (swriden_hist_pidm, swriden_hist_id, swriden_hist_first_name,
 swriden_hist_last_name, swriden_hist_change_ind,
 swriden_hist_activity_date)
 VALUES (:OLD.swriden_pidm, :OLD.swriden_id,
 :OLD.swriden_first_name, :OLD.swriden_last_name,
 :OLD.swriden_change_ind, :OLD.swriden_activity_date);
END update_swriden;
/

The following statements would cause the above trigger to fire:

update swriden set swriden_first_name = 'Joe'
 where swriden_pidm = 12340;
commit;

Example using :NEW:
CREATE SEQUENCE pidm_sequence START WITH 20000;

CREATE OR REPLACE TRIGGER gen_pidm
 BEFORE INSERT ON swriden
 FOR EACH ROW
BEGIN

 SELECT pidm_sequence.NEXTVAL
 INTO :NEW.swriden_pidm
 FROM dual;
END gen_pidm;

 /

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 188

Section K: Database Triggers

Lesson: Restrictions on Triggers

Multiple Triggers per Table
You can have multiple triggers on a table. There could be a separate trigger for Updates, Inserts,
and Deletes.

A table can also have one trigger that handles all three options. A trigger like this would look
similar to:

CREATE OR REPLACE TRIGGER TIUD_SWRIDEN
BEFORE INSERT OR UPDATE OR DELETE
ON SWRIDEN
REFERENCING OLD AS OLD NEW AS NEW
FOR EACH ROW

BEGIN
 IF INSERTING then
 -- take some actions…..
 ELSIF UPDATING then
 -- take some other actions…..
 ELSIF DELETING then
 -- take the last alternate actions….
 END IF;
END;
/

In addition you can have multiples of each type of trigger on a table. You could have two
triggers for updates, three for inserts and one for deletes. Why would you want to do that? The
application may place triggers on a table. Instead of modifying baseline code, you could add
another trigger of the same type to incorporate your own code. However, Oracle will not
guarantee the order in which multiple triggers fire. Therefore, do not create a trigger that is
dependent on the results of another trigger.

Note: The above example uses the REFERENCING clause with the default correlation
 names OLD and NEW. Alternate correlation names can be specified if desired.
 (i.e. REFERENCING OLD AS BEFORE NEW AS AFTER)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 189

Section K: Database Triggers

Lesson: Restrictions on Triggers (continued)

Restrictions
• Triggers may not issue a transactional statement, such as COMMIT, ROLLBACK, or

SAVEPOINT unless they have been defined with the AUTONOMOUS TRANSACTION
directive.

• Any procedures that are called from the trigger cannot contain any transactional
statements

• The trigger body cannot declare any LONG or LONG RAW variables
• The :NEW and :OLD keywords cannot refer to a LONG or LONG RAW column
• Triggers cannot exceed 32k in size
• DDL Statements are not allowed in a trigger

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 190

Section K: Database Triggers

Lesson: Autonomous Transactions

Description
The PRAGMA AUTONOMOUS_TRANSACTION directive can be given to a trigger or
procedure, package, or anonymous block to indicate that the actions in that PL/SQL act as a
separate transaction from the one calling the PL/SQL.

This allows you to perform actions like writing errors to an error table even though the
transaction causing the error may roll back any changes. Previously, even if you wrote
information to an error table in a trigger, it would be rolled back if the surrounding transaction
was rolled back. In addition, without this you had to rely on built-ins like DBMS_OUTPUT to
display error information.

Commands
The following commands are allowed in Autonomous Transactions for the currently active block
of code only:

• SET TRANSACTION
• COMMIT
• ROLLBACK
• SAVEPOINT
• ROLLBACK TO SAVEPOINT

Note that a rollback in the main transaction will not undo anything committed in the
Autonomous Transaction. Therefore, if you are, for example, writing audit records in an
Autonomous Transaction and the transaction gets rolled back, the audit record would still exist.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 191

Section K: Database Triggers

Lesson: Autonomous Transactions
(continued)

Syntax
CREATE OR REPLACE TRIGGER st_track_ssn_changes
 AFTER UPDATE ON swriden
 FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
 INSERT INTO audit_table
 (audit_id, table_name, old_value, new_value,
 message, activity_date)
 VALUES
 (audit_seq.NEXTVAL, 'SWRIDEN', :OLD.swriden_id, :NEW.swriden_id,
 'SWRIDEN_ID changed', SYSDATE);
 COMMIT;

END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 192

Section K: Database Triggers

Lesson: The WHEN Clause

WHEN clause
The WHEN clause is valid for row-level triggers only, and is used to restrict when the trigger
fires.

CREATE OR REPLACE TRIGGER check_amount
 BEFORE UPDATE OF twraccd.amount ON twraccd
 FOR EACH ROW
 WHEN (NEW.twraccd_amount IS NULL)
BEGIN
… trigger body
END;

/

Note: Colons in front of the NEW and OLD pseudo-columns are only used within a trigger body.
 These keywords or correlation names are not considered bind variables when specified in
 the WHEN clause, and so are not preceded by a colon (:). Remember to omit the colon in
 front of the OLD and NEW pseudo-columns within the WHEN clause.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 193

Section K: Database Triggers

Lesson: Viewing Stored Trigger Code

USER_ TRIGGERS
Trigger code is not stored in the USER_SOURCE view as it is for procedures, packages, and
functions. View the trigger code by querying the database views, USER_TRIGGERS (under
your own schema) or ALL_TRIGGERS (any trigger that your schema has access to).

You can view the trigger information as well as the underlying code by querying against the
database view, USER_TRIGGERS.

SQL> DESC USER_TRIGGERS;

 Name Null? Type
 ------------------------------- -------- ----
 TRIGGER_NAME VARCHAR2(30)
 TRIGGER_TYPE VARCHAR2(16)
 TRIGGERING_EVENT VARCHAR2(227)
 TABLE_OWNER VARCHAR2(30)
 BASE_OBJECT_TYPE VARCHAR2(16)
 TABLE_NAME VARCHAR2(30)
 COLUMN_NAME VARCHAR2(4000)
 REFERENCING_NAMES VARCHAR2(128)
 WHEN_CLAUSE VARCHAR2(4000)
 STATUS VARCHAR2(8)
 DESCRIPTION VARCHAR2(4000)
 ACTION_TYPE VARCHAR2(11)
 TRIGGER_BODY LONG

SELECT trigger_type, table_name, triggering_event
 FROM user_triggers
 WHERE trigger_name = 'UPDATE_SWRIDEN';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 194

Section K: Database Triggers

Lesson: View Trigger Code (continued)

Use the hierarchical tree in SQL Developer to view code from your triggers. You can right click
on an item to Edit the code or to Compile the object if it becomes invalid.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 195

Section K: Database Triggers

Lesson: Viewing Stored Trigger Errors

USER_ ERRORS
Unlike procedures, functions, and packages, triggers do not display any errors in the code
through the 'show errors' command. To view trigger errors during creation, select from the view
USER_ERRORS.

SQL> DESC user_errors
 Name Null? Type
 ------------------------------- -------- ----
 NAME NOT NULL VARCHAR2(30)
 TYPE VARCHAR2(12)
 SEQUENCE NOT NULL NUMBER
 LINE NOT NULL NUMBER
 POSITION NOT NULL NUMBER
 TEXT NOT NULL VARCHAR2(4000)
 ATTRIBUTE VARCHAR2(9)
 MESSAGE_NUMBER NUMBER

SQL> SELECT text from user_errors
 WHERE name = 'UPDATE_SWRIDEN';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 196

Section K: Database Triggers

Lesson: Viewing Stored Trigger Errors
(continued)

SQL Developer will show you the errors when you try and compile a trigger without having to
select from the user_errors table.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 197

Section K: Database Triggers

Lesson: Remove Triggers

Remove Triggers
Triggers can either be removed permanently or temporarily. You may want to temporarily turn
off a trigger while doing bulk activities like data loads or conversions and then re-enable it for
normal transaction processing. Note, however, that if you disable a trigger that trigger remains
disabled for all transactions (bulk and online) until that trigger is re-enabled.

Drop a trigger
To permanently remove a trigger, use the following syntax:
DROP TRIGGER triggername;

Disable/Enable a trigger
To temporarily disable a trigger and then re-enable at a later time. The syntax is:

ALTER TRIGGER triggername [DISABLE | ENABLE];

Examples:
ALTER TRIGGER update_swriden DISABLE;
ALTER TRIGGER update_swriden ENABLE;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 198

Section K: Database Triggers

Lesson: Order of Trigger Firing

Order
1. Execute the BEFORE statement-level trigger, if present.

2. For each row affected by the statement:

• Execute the BEFORE row-level trigger, if present
• Execute the statement
• Execute the AFTER row-level trigger, if present

3. Execute the AFTER statement-level trigger, if present.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 199

Section K: Database Triggers

Lesson: Order of Trigger Firing (Continued)

Example
CREATE OR REPLACE TRIGGER Before_update_swriden
 BEFORE UPDATE ON swriden
BEGIN
 INSERT INTO audit_table (audit_id, table_name,
 message, activity_date)
 VALUES (audit_seq.NEXTVAL, 'SWRIDEN',
 'Before update statement', SYSDATE);
END Before_update_swriden;
/

CREATE OR REPLACE TRIGGER After_update_swriden
 AFTER UPDATE ON swriden
BEGIN
 INSERT INTO audit_table (audit_id, table_name,
 message, activity_date)
 VALUES (audit_seq.NEXTVAL, 'SWRIDEN',
 'After update statement', SYSDATE);
END After_update_swriden;
/

CREATE OR REPLACE TRIGGER Before_update_row_swriden
 BEFORE UPDATE ON swriden
 FOR EACH ROW
BEGIN
 INSERT INTO audit_table (audit_id, table_name,
 message, activity_date)
 VALUES (audit_seq.NEXTVAL, 'SWRIDEN',
 'Before update row '||:old.ROWID, SYSDATE);
END Before_update_row_swriden;
/

CREATE OR REPLACE TRIGGER After_update_row_swriden
 AFTER UPDATE ON swriden
 FOR EACH ROW
BEGIN
 INSERT INTO audit_table (audit_id, table_name,
 message, activity_date)
 VALUES (audit_seq.NEXTVAL, 'SWRIDEN',
 'After update row '||:old.ROWID, SYSDATE);
END After_update_row_swriden;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 200

Section K: Database Triggers

Lesson: Order of Trigger Firing (Continued)

Subsequent update
Suppose an update occurs on the SWRIDEN table that affects three rows. If we select from the
audit_table, we would get the following results:

 SELECT table_name, message, activity_date
 FROM audit_table
 ORDER BY audit_id;

TABLE_NAME MESSAGE ACTIVITY_
---------- -- ---------
SWRIDEN Before update statement 29-OCT-07
SWRIDEN Before update row AAAD7oAAEAAAAL3AAP 29-OCT-07
SWRIDEN After update row AAAD7oAAEAAAAL3AAP 29-OCT-07
SWRIDEN Before update row AAAD7oAAEAAAAL3AAQ 29-OCT-07
SWRIDEN After update row AAAD7oAAEAAAAL3AAQ 29-OCT-07
SWRIDEN Before update row AAAD7oAAEAAAAL3AAR 29-OCT-07
SWRIDEN After update row AAAD7oAAEAAAAL3AAR 29-OCT-07
SWRIDEN After update statement 29-OCT-07

8 rows selected.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 201

Section K: Database Triggers

Lesson: Instead-of Triggers

Definition
Instead-of triggers are created against views instead of tables. It allows table data to be modified
through issuing DML against a view. The trigger fires and updates the underlying table(s)
INSTEAD-OF updating the view itself.

Limitations
They cannot be used against complex views that:

• Use the DISTINCT operator
• Use aggregate functions
• Contain a GROUP BY, CONNECT BY or START WITH clause
• Contain a subquery in a SELECT list
• Contain a set operator such as UNION, MINUS or INTERSECT

May not always be available on views that join multiple tables.
May conflict with any FGAC row-level security policies defined on the view.

Example
CREATE OR REPLACE TRIGGER swvtele_trig
INSTEAD OF UPDATE ON swvtele
FOR EACH ROW
BEGIN
 UPDATE swraddr
 SET swraddr_phone_area = substr(:new.swvtele_phone,2,3),
 swraddr_phone_number = substr(:new.swvtele_phone,
 instr(:new.swvtele_phone,'-')-3,3)
 ||
 substr(:new.swvtele_phone,
 instr(:new.swvtele_phone,'-') +1)
 WHERE swraddr_pidm = :new.swvtele_pidm;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 202

Section K: Database Triggers

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Create a sequence.

Exercise 2
Test the sequence by selecting the first value.

Exercise 3
Create a database trigger on SWBPERS. For each update statement, insert into the temp table a
value from the above sequence, the current date, and the user making the update. Write a
statement to update a row in the SWBPERS table and view the results of the trigger in the temp
table (don't forget to commit your update).

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 203

Section K: Database Triggers

Lesson: Self Check (Continued)

Exercise 4
Create a database trigger on the SWRIDEN table. For every row inserted, check to see if a
current row exists (change_ind is null). Update the original current row so that the change
indicator is an I (ID change) or an N (name change), depending on the type of change.

Write an insert statement for the SWRIDEN table that results in a change to an existing record's
ID or Name (do not insert a record for a new person). After committing your insert, check the
table to see if the previous record for that PIDM was updated correctly.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 204

Section L: File Input/Output

Lesson: Overview

Introduction
DBMS_OUTPUT allows you to print information to the screen. Although you could spool that
information and create basic log files, it was not intended for reporting purposes. However,
since file input and output is a basic need, Oracle created the package UTL_FILE, which is
available in PL/SQL 2.3 and higher.

Objectives
• Input/output environments
• Steps to open, read to, write from, and close files

Section contents
Overview ..204
Input/Output Environments..205
Operating System Security...207
UTL_FILE Package ...208
Open and Close Files..209
File Output..211
File Input ..212
Error Handling..213
Self Check ..215

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 205

Section L: File Input/Output

Lesson: Input/Output Environments

Setup
Files can only be written to the server where the database resides. There are two ways to setup
the environment for writing files to disk. The first method involves setting a variable in the
INIT.ORA (or SPFILE.ora) that contains a directory or set of directories where files can be
written. The second method involves using Oracle directory objects. Both methods are
explained below.

INIT.ORA
This is an older method of telling Oracle the directories where the database can read and write
data. One or more directories can be added to the variable, separated by commas.

UTL_FILE_DIR = /y/banner/home, /x/temp

If the operating system is case sensitive, then you must specify the directories in the correct case.

Changing or adding directories required that the database be shutdown and restarted.

While this method is still supported it represents a security risk as any user who can log into the
database can find out which directories are available for reading and writing. The second
method below is the new and preferred method of defining directories for reading and writing
files.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 206

Section L: File Input/Output

Lesson: Input/Output Environments
(continued)

Directory Objects
A directory object is a database object with a name or alias that points to an actual directory on
the database server. Each directory object can point to a different directory and there is no limit
on the number of directory objects you can create.

Syntax
CREATE OR REPLACE DIRECTORY <internal_name> AS <full path>;

The path should not contain a trailing slash. Be sure to enter the directory path in the correct
case for your operating system as directories are case sensitive.

SQL> CREATE OR REPLACE DIRECTORY my_dir AS '/u01/app/sghe/inb/my_files';

Security
The CREATE ANY DIRECTORY privilege must be granted to a user before they can create a
directory object.

Although multiple database users can create directory objects, all directory objects are owned by
the SYS user. When a directory object is created, the user who created the object is
automatically granted read and write privileges to that directory.

Specific READ and/or WRITE privileges can be granted on directory objects to any number of
users, making it more secure than UTL_FILE_DIR which is available to all database users.

Data Dictionary
To view available directory objects check the ALL_DIRECTORIES VIEW (there is no
user_directories view as all directories are owned by the SYS or SYSTEM user).

To view who has permissions on a directory check the ALL_TAB_PRIVS which contains
privileges on tables, stored PL/SQL objects, views, and directories.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 207

Section L: File Input/Output

Lesson: Operating System Security

Oracle user
The File I/O operations that are performed by UTL_FILE will be done as the Oracle user. The
Oracle user is the owner of the files that are used to run the database. Therefore, the Oracle user
must have rights to access the directory that is referenced in the UTL_FILE call.

Make sure that all directories referenced by UTL_FILE_DIR or DIRECTORY objects have the
correct permissions to allow the Oracle owner to write to those directories.

Validation
When the UTL_FILE_DIR parameter is set or a DIRECTORY object is created, the database
does not check to see whether the path exists, is valid, and/or has the correct permissions. You
can define a path in the database and create it later. However, if you attempt to read or write to a
directory that either does not exist or cannot be written to by the Oracle software owner, you will
receive a run time error.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 208

Section L: File Input/Output

Lesson: UTL_FILE Package

Description
The UTL_FILE package is a built-in package that allows the reading and writing of operating
system files. There are numerous procedures and functions in the package; many of which will
be described below.

All file operations are done through what is called a file handle or a datatype called FILE_TYPE
defined as part of the package definition. This is essentially a pointer to a file.

The file must be opened before it can be written to or read from. When writing, the package will
create a file with the name specified if one does not exist.

If using directories, remember a directory object is a data dictionary object and data dictionary
objects are stored in upper case in the data dictionary. When passing the directory name to any
of the functions or procedures in the UTL_FILE package, make sure you pass it in upper case.

Programming tip: Don't make the user guess which case they need to use when passing
parameters. Handle case sensitivities inside the PL/SQL program.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 209

Section L: File Input/Output

Lesson: Open and Close Files

FOPEN
Opens a file for input or output and returns a pointer to the file. A file can be opened for input
only or output only at any time.

FUNCTION FOPEN(location IN VARCHAR2,
 Filename IN VARCHAR2,
 Open_mode IN VARCHAR2)
RETURN FILE_TYPE;

Parameters

Parameter Type Description
Location VARCHAR2 • Actual full path if using

UTL_FILE_DIR.
• Directory name or alias if using

directories.
• Case sensitive.

Filename VARCHAR2 Name of file to be opened. If the mode
is 'w', any existing file is overwritten.

Open_mode VARCHAR2 Mode to be used.
• r – Read
• w – Write
• a – Append

Return value UTL_FILE.FILE_TYPE File handle.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 210

Section L: File Input/Output

Lesson: Open and Close Files (Continued)

FCLOSE
Closes a file. When you are finished using a file, you should always close it. This will free up
resources.

PROCEDURE FCLOSE(file_handle IN OUT FILE_TYPE);

IS_OPEN
Returns TRUE if the specified file is open, and FALSE if not.

FUNCTION IS_OPEN(file_handle IN FILE_TYPE)
 RETURN BOOLEAN;

FCLOSE_ALL
Closes all open files. Intended for cleanup purposes.

PROCEDURE FCLOSE_ALL;

Note: FCLOSE_ALL will close all files and free up the resources. However, it does not mark
the files as closed, so IS_OPEN will still return TRUE after an FCLOSE_ALL.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 211

Section L: File Input/Output

Lesson: File Output

Output procedures
There are five procedures that you can use to output lines. The procedures are similar to the ones
used in the DBMS_OUTPUT package.

PUT
Outputs the string to the file. Does not append a newline character.
PROCEDURE PUT(file_handle IN FILE_TYPE,
 Buffer IN VARCHAR2);

NEW_LINE
Writes one or more newline characters to the file. The character is dependent upon the operating
system.
PROCEDURE NEW_LINE(file_handle IN FILE_TYPE,
 Lines IN NATURAL := 1);

PUT_LINE
Outputs a string to the file including a newline character.
PROCEDURE PUT_LINE(file_handle IN FILE_TYPE,
 Buffer IN VARCHAR2);

PUTF
Puts a formatted string to the file. Is a limited version of the C version of fprintf().
PROCEDURE PUTF(file_handle IN FILE_TYPE,
 Format IN VARCHAR2,
 arg1 IN VARCHAR2 DEFAULT NULL,
 arg2 IN VARCHAR2 DEFAULT NULL,
 arg3 IN VARCHAR2 DEFAULT NULL,
 arg4 IN VARCHAR2 DEFAULT NULL,
 arg5 IN VARCHAR2 DEFAULT NULL);

FFLUSH
Forces the buffer to be immediately written to the specified file.

For PUT, PUT_LINE, PUTF, and NEW_LINE, data output is normally buffered instead of being
immediately written to a file. Once the buffer is full, the data is written. FFLUSH forces the
buffer to be written to the file.

PROCEDURE FFLUSH(file_handle IN FILE_TYPE);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 212

Section L: File Input/Output

Lesson: File Input

GET_LINE
GET_LINE is used to read from a file.

PROCEDURE GET_LINE(file_handle IN FILE_TYPE,
 Buffer OUT VARCHAR2);

After the last line is read from the file, the next GET_LINE will raise the NO_DATA_FOUND
exception.

Example
CREATE OR REPLACE PROCEDURE READ_FILE
/* Reads from Filename, and sends the contents to the screen. */
(pi_filedir IN VARCHAR2, pi_filename IN VARCHAR2) IS
 lv_filehandle UTL_FILE.FILE_TYPE;
 lv_buffer_line VARCHAR2(2000);
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 lv_filehandle := UTL_FILE.FOPEN(pi_filedir,pi_filename,'r');
 LOOP
 BEGIN
 UTL_FILE.GET_LINE(lv_filehandle,lv_buffer_line);
 DBMS_OUTPUT.PUT_LINE(lv_buffer_line);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 EXIT;
 END;
 END LOOP;
 UTL_FILE.FCLOSE(lv_filehandle);
END READ_FILE;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 213

Section L: File Input/Output

Lesson: Error Handling

Handling exceptions

EXCEPTION RAISED WHEN RAISED BY
INVALID_PATH Directory or filename is

invalid or is not accessible.
FOPEN

INVALID_MODE Invalid string specified for the
file mode.

FOPEN

INVALID_FILEHANDLE The file handle does not
specify an open file.

FCLOSE, GET_LINE, PUT,
PUT_LINE, NEW_LINE,
PUTF, FFLUSH

INVALID_OPERATION The file could not be opened.
This could be raised because
of operating system
permissions. Also is raised
when attempting to read from
a write file, or write to a read
file.

GET_LINE, PUT,
PUT_LINE, NEW_LINE,
PUTF, FFLUSH

READ_ERROR An operating system error
occurred as the file was read.

GET_LINE

WRITE_ERROR An operating system error
occurred during a write
operation.

PUT, PUT_LINE,
NEW_LINE, FFLUSH,
FCLOSE, FCLOSE_ALL

INTERNAL_ERROR An unspecified internal error
occurred.

All functions

NO_DATA_FOUND The end of file was reached
during a read.

GET_LINE

VALUE_ERROR The input line is too large for
the buffer line size.

GET_LINE

1

1 Urman, Scott. ORACLE8 PL/SQL Programming. Berkeley: Osborne McGraw-Hill., 1997.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 214

Section L: File Input/Output

Lesson: Error Handling (Continued)

Example
CREATE OR REPLACE PROCEDURE READ_WRITE_FILE
/* Reads from the in_file, and writes the data to the out_file in
double-spaced format. */
(pi_filedir IN VARCHAR2, pi_in_file IN VARCHAR2,
 pi_out_file IN VARCHAR2) IS
 lv_sourcehandle UTL_FILE.FILE_TYPE;
 lv_outhandle UTL_FILE.FILE_TYPE;
 lv_buffer_line VARCHAR2(2000);
BEGIN
 lv_sourcehandle := UTL_FILE.FOPEN(pi_filedir,pi_in_file,'r');
 lv_outhandle := UTL_FILE.FOPEN(pi_filedir, pi_out_file, 'w');
 LOOP
 BEGIN
 UTL_FILE.GET_LINE(lv_sourcehandle,lv_buffer_line);
 UTL_FILE.NEW_LINE(lv_outhandle);
 UTL_FILE.PUT_LINE(lv_outhandle,lv_buffer_line);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 EXIT;
 END;
 END LOOP;
 UTL_FILE.FCLOSE(lv_sourcehandle);
 UTL_FILE.FCLOSE(lv_outhandle);
EXCEPTION
 WHEN UTL_FILE.INVALID_OPERATION THEN
 UTL_FILE.FCLOSE_ALL;
 RAISE_APPLICATION_ERROR(-20061, 'Invalid Operation');
 WHEN UTL_FILE.INVALID_FILEHANDLE THEN
 UTL_FILE.FCLOSE_ALL;
 RAISE_APPLICATION_ERROR(-20062, 'Invalid File');
 WHEN UTL_FILE.WRITE_ERROR THEN
 UTL_FILE.FCLOSE_ALL;
 RAISE_APPLICATION_ERROR(-20063, 'Write Error');
 WHEN OTHERS THEN
 UTL_FILE.FCLOSE_ALL;
 RAISE;
END READ_WRITE_FILE;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 215

Section L: File Input/Output

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Create a directory object in the database that points to a directory supplied by the instructor. To
ensure each class user creates a unique directory name include your initials in the name of the
directory.

Exercise 2
Create a package called MY_TOOLS containing a stored procedure called DISPLAY_SOURCE.
The procedure should accept the parameters of a directory name, output file name, and
subprogram name. The DISPLAY_SOURCE procedure will retrieve the source code from
USER_SOURCE for the program passed in as the subprogram name and write it to a file.

Execute the packaged procedure, and passing the directory you created above, a file name such
as <Your Initials>_ex2.txt (e.g. abc_ex2.txt), and the name of one of the stored programs you
created in class (e.g. CALC_AMT_OWED, ACCOUNT, INSERT_ERRORS).

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 216

Section L: File Input/Output

Lesson: Self Check (Continued)

Exercise 2 (additional space)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 217

Section L: File Input/Output

Lesson: Self Check (Continued)

Exercise 3
Create a second stored procedure called display_source within the MY_TOOLS package
(overloading the package). The procedure should only accept the parameters of a directory name
and file name. It will:

• Retrieve the source of all subprograms within your schema from USER_SOURCE and
write the output to a directory and file as specified by your instructor.

• Test the procedure by executing it and passing in the name of one of the procedures or
functions you created previously.

• Make this version case insensitive by handling the case restrictions inside the procedure.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 218

Section L: File Input/Output

Lesson: Self Check (Continued)

Exercise 4
Create a third stored procedure within the package MY_TOOLS called LOG_ERROR. The
procedure should write error messages to a log file.

• The parameters passed should be a program name and error message.
• The log file should be named the program name parameter concatenated with '.log', and

in a directory created in Exercise 1.
• The procedure should write the current system time and the error message to the log file.
• Call the log_error procedure by forcing an error. Below is a sample of forcing an error:

DECLARE
 lv_dummy varchar2(1);
BEGIN
 SELECT '12345' INTO LV_DUMMY
 FROM DUAL;
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 lv_SQLERRM VARCHAR2(200) := SUBSTR(SQLERRM,1,200);
 BEGIN
 My_tools.error_log('<DIR_NAME>','myprogram',
 lv_sqlerrm);
 END;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 219

Section L: File Input/Output

Lesson: Self Check (Continued)

Exercise 4 (cont.)
(more space, if necessary)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 220

Section M: Communicating Across Sessions

Lesson: Overview

Introduction
Two PL/SQL packages allow you to communicate across sessions that are connected to the same
database. The two packages are DBMS_PIPE and DBMS_ALERT.

Objectives
Upon completion of this section, each attendee will be able to

• use the package DBMS_PIPE to send messages across sessions to other users
• use the package DBMS_ALERT to send notifications across sessions to other users.

Section contents
Overview ..220
DBMS_PIPE ..221
Public vs. Private Pipes ..222
DBMS_PIPE - Pack and Send...223
DBMS_PIPE – Receive and Unpack ...224
DBMS_PIPE - Example..225
Remove a Pipe..226
Remove A Pipe's Contents ...227
DBMS_ALERT..228
Sending Alerts ..229
Receiving Alerts ...230
Unregister for an Alert ...235
DBMS_PIPE vs. DBMS_ALERT..236
Self Check ..237

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 221

Section M: Communicating Across Sessions

Lesson: DBMS_PIPE

Purpose
The package DBMS_PIPE allows you to send messages across sessions to other users. The
message may consist of one or more string variables packed together. The user who reads the
message must know how many strings were packed together to properly unpack them.

This methodology is used in BANNER for communication between the database and external C
and COBOL programs. Parameters may be packed into a message and the C or COBOL
program would know how many parameters it expects and unpacks the message into the
approprite parameter pieces.

When using a pipe name in all functions and procedures, those pipe names are case sensitive.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 222

Section M: Communicating Across Sessions

Lesson: Public vs. Private Pipes

Public pipes
A pipe is implicitly created when a message is sent using an unknown pipe. This automatically
creates a public pipe. A public pipe allows anyone to receive the message who has the grant and
who knows the pipe name.

Private pipes
You may want to create private pipes, which will only allow the user who created the pipe to
read from it. To explicitly create a pipe, use the procedure CREATE_PIPE.

CREATE_PIPE syntax
CREATE_PIPE (pipename IN VARCHAR2,
 maxpipesize IN INTEGER DEFAULT 8192,
 Private IN BOOLEAN DEFAULT TRUE)
RETURN INTEGER;

Example
DECLARE
 lv_status INTEGER;
BEGIN
 lv_status := DBMS_PIPE.CREATE_PIPE('MY_PIPE',3000,TRUE);
 DBMS_OUTPUT.ENABLE (20000);
 IF lv_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Successfully created pipe.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not create pipe.');
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 223

Section M: Communicating Across Sessions

Lesson: DBMS_PIPE - Pack and Send

PACK_MESSAGE syntax:
Place a message into a buffer. The buffer is not written to the pipe until the SEND_MESSAGE
program is called.

DBMS_PIPE.PACK_MESSAGE (item IN VARCHAR2 | NCHAR | NUMBER | DATE);

SEND_MESSAGE syntax:
Send all components created with the PACK_MESSAGE program to the pipe as a single
message.

DBMS_PIPE.SEND_MESSAGE (pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT MAXWAIT,
 maxpipesize IN INTEGER DEFAULT 8192)
 RETURN INTEGER;

• timeout is the time in seconds to wait before returning

o If timeout is not specified, the package constant DBMS_PIPE.MAXWAIT is
used:

 maxwait constant integer := 86400000; /* 1000 days */
 (60 seconds x 60 minutes x 24 hours x 1000 days)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 224

Section M: Communicating Across Sessions

Lesson: DBMS_PIPE – Receive and Unpack

RECEIVE MESSAGE syntax:
Take a message from a pipe and places it in an internal buffer. If there were multiple pieces
packed into a message they should be unpacked into the correct number of pieces in accordance
with how the message will be processed.

DBMS_PIPE.RECEIVE_MESSAGE (pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT maxwait)
 RETURN INTEGER;

• timeout is the time in seconds to wait before returning

o If timeout is not specified, the package constant DBMS_PIPE.MAXWAIT is
used:

 maxwait constant integer := 86400000; /* 1000 days */
 (60 seconds x 60 minutes x 24 hours x 1000 days)

IMPORTANT: if you do not specify a wait time, the process will wait up until 1000 days or until
the database is shut down for a message. This may appear to your program as if it is 'hanging';
however, it is just waiting for a message to appear.

UNPACK_MESSAGE syntax:
Break a message received by RECEIVE_MESSAGE into its associated components. The
receiving program should know how many pieces were packed so it knows how many to unpack.

DBMS_PIPE.UNPACK_MESSAGE(item IN VARCHAR2 | NCHAR | NUMBER | DATE);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 225

Section M: Communicating Across Sessions

Lesson: DBMS_PIPE - Example

Example
DECLARE
 lv_status INTEGER;
 lv_username VARCHAR2(30);
 lv_current_date VARCHAR2(11);
 lv_message VARCHAR2(50);
 BEGIN
 SELECT USER, TO_CHAR(SYSDATE, 'DD-MON-YYYY'),'This is a test'
 INTO lv_username, lv_current_date, lv_message
 FROM DUAL;
 DBMS_PIPE.PACK_MESSAGE(lv_username);
 DBMS_PIPE.PACK_MESSAGE(lv_current_date);
 DBMS_PIPE.PACK_MESSAGE(lv_message);
 lv_status := DBMS_PIPE.SEND_MESSAGE('MY_PIPE_NAME');
 IF lv_status <> 0 THEN
 DBMS_OUTPUT.ENABLE(20000);
 DBMS_OUTPUT.PUT_LINE('Could not send message');
 END IF;
 END;

/

DECLARE
 lv_var_1 VARCHAR2(100);
 lv_var_2 VARCHAR2(100);
 lv_var_3 VARCHAR2(100);
 lv_status INTEGER;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 lv_status := DBMS_PIPE.RECEIVE_MESSAGE('MY_PIPE_NAME');

 IF lv_status = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(lv_var_1);

 DBMS_PIPE.UNPACK_MESSAGE(lv_var_2);
 DBMS_PIPE.UNPACK_MESSAGE(lv_var_3);
 DBMS_OUTPUT.PUT_LINE(lv_var_1||' '||lv_var_2||' '||lv_var_3);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not receive message');
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 226

Section M: Communicating Across Sessions

Lesson: Remove a Pipe

REMOVE_ PIPE
Pipes created explicitly with the CREATE_PIPE function can only be removed with the
REMOVE_PIPE function. Shutting down the database clears or removes all open pipes.

Syntax
FUNCTION REMOVE_PIPE(pipename IN VARCHAR2)
 RETURN INTEGER;

Zero will be returned if the pipe is successfully removed, or if the pipe did not exist in the first
place.

Example
DECLARE
 lv_status INTEGER;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 lv_status := DBMS_PIPE.REMOVE_PIPE('MY_PIPE');

 IF lv_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Successfully removed pipe.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not remove pipe.');
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 227

Section M: Communicating Across Sessions

Lesson: Remove A Pipe's Contents

PURGE
To clear out the contents of a pipe, use the procedure PURGE.

Syntax
PROCEDURE PURGE (pipename IN VARCHAR2);

Example
BEGIN
 DBMS_PIPE.PURGE('MY_PIPE');
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 228

Section M: Communicating Across Sessions

Lesson: DBMS_ALERT

Introduction
The package DBMS_ALERT allows you to send messages when transactions are committed. If
you want to take some action when a transaction is committed, you can signal an alert and
another process can pick up that alert and take action based on the transaction that was
committed.

SIGNAL call
The SIGNAL call signals an alert in the data dictionary. The alert is not actually registered until
the transaction containing SIGNAL commits; if there is a rollback, the alert is ignored.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 229

Section M: Communicating Across Sessions

Lesson: Sending Alerts

SIGNAL procedure
The SIGNAL procedure puts an entry in the dbms_alert_info data dictionary table. When the
transaction commits, the state of the alert is changed from “not signaled” to “signaled”.

Syntax
PROCEDURE SIGNAL (name IN VARCHAR2,
 message IN VARCHAR2);

Parameters
• Name is the name of the alert to be signaled

o Maximum length 30 characters
o Not case sensitive
o Names beginning with ORA$ are reserved by Oracle

• Message is the message content
o Maximum length 1800 bytes

Multiple sessions
Only one session can signal an alert at a time; if multiple sessions signal the same alert, the first
session will block subsequent sessions.

Alert messages are received by all sessions that are waiting for them. If no sessions are waiting,
the first session that waits will receive it immediately.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 230

Section M: Communicating Across Sessions

Lesson: Receiving Alerts

Introduction
Sessions will receive the alerts for which they have been registered.

Registering
The REGISTER procedure registers a session's interest in an alert, which allows the session to
receive that alert.

Syntax
PROCEDURE REGISTER (name IN VARCHAR2);

Parameters
• name is the name of the alert

Notes
• A session can register for an unlimited number of alerts.
• Registering does not cause session blocking.
• Sessions remain registered until they disconnect from the database, or until the REMOVE

procedure is called

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 231

Section M: Communicating Across Sessions

Lesson: Receiving Alerts (Continued)

WAITONE
The WAITONE procedure waits for a specified alert.

When the alert is signaled, or if it has already been signaled, it will return with a status of 0. If
the alert is not signaled, WAITONE will 'pause' the receiving session until the alert is signaled or
the timeout value is reached.

If multiple messages are passed to the alert the older ones are discarded. A WAIT command will
only get the most current message.

Syntax
PROCEDURE WAITONE (name IN VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters
• name is the name of the specified alert
• message is the message associated with the specified alert
• status indicates whether the alert has been received

o 0 indicates that the alert has been received, 1 indicates a timeout
• timeout is the time in seconds to wait before returning

o If timeout is not specified, the package constant DBMS_ALERT.MAXWAIT is
used:

 maxwait constant integer := 86400000; /* 1000 days */
 (60 seconds x 60 minutes x 24 hours x 1000 days)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 232

Section M: Communicating Across Sessions

Lesson: Receiving Alerts (Continued)

WAITANY
The WAITANY procedure is similar to WAITONE, but waits for any registered alert rather than
for a specified alert.

Syntax
PROCEDURE WAITANY (name OUT VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters
• name is the name of the signaled alert

o Unlike WAITONE, name is an OUT parameter, returning the name of the alert
that is signaled

• message is the message associated with the signalled alert
• status indicates whether the alert has been received

o 0 indicates that the alert has been received, 1 indicates a timeout
• timeout is the time in seconds to wait before returning 1

o If timeout is not specified, DBMS_ALERT.MAXWAIT is used

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 233

Section M: Communicating Across Sessions

Lesson: Receiving Alerts (Continued)

SET_DEFAULTS
The SET_DEFAULTS procedure sets the polling interval, which is the amount of time between
checks for registered alerts.

This procedure is only used when the database is running in shared mode, when a polling loop is
required to check for alerts signaled by other instances.

Syntax
PROCEDURE SET_DEFAULTS (polling_interval IN NUMBER);

Parameters
• polling_interval is the amount of time between each check for alerts
• The default is 5 seconds

Polling loops
Under most circumstances, polling loops are not required due to Oracle's event-driven nature.
Loops are required when running in shared mode, as above, or when no registered alerts have
triggered WAITANY.

In the latter case, the polling interval increases automatically from 1 to 30 seconds, and
SET_DEFAULTS cannot be used to set the interval manually.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 234

Section M: Communicating Across Sessions

Lesson: Receiving Alerts (Continued)

Example

DECLARE
 lv_status INTEGER;
 lv_message VARCHAR2 (100);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);
 DBMS_ALERT.waitone ('ALERT1', lv_message, lv_status, 30);
 IF lv_status = 0 THEN
 DBMS_OUTPUT.put_line (lv_message);
 ELSIF lv_status = 1 THEN
 DBMS_OUTPUT.put_line ('Timeout on alert1.');
 END IF;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 235

Section M: Communicating Across Sessions

Lesson: Unregister for an Alert

REMOVE
The REMOVE procedure unregisters a session's interest in an alert.

Syntax
PROCEDURE REMOVE (name IN VARCHAR2);

Parameters
• name is the name of the alert to be unregistered

Example
BEGIN
 DBMS_ALERT.REMOVE('ALERT1');
END;

/

REMOVEALL
The REMOVEALL procedure unregisters a session's interest in all alerts. The first call to the
DBMS_ALERT package calls REMOVEALL to make sure alerts from previous sessions do not
get mixed up with the current session (session numbers are cycled).

This procedure has an implied commit.

Syntax
PROCEDURE REMOVEALL;

Example
BEGIN
 DBMS_ALERT.REMOVEALL;

END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 236

Section M: Communicating Across Sessions

Lesson: DBMS_PIPE vs. DBMS_ALERT

Similarities
• DBMS_PIPE and DBMS_ALERT are both implemented as PL/SQL packages, and can

thus be used from any PL/SQL execution environment.
• Both packages send messages between sessions connected to the same instance.
• In PL/SQL Version 2, pipes and alerts are the only ways to send messages to a waiting C

daemon. (Oracle8 circumvents this via external procedures, which are outside the scope
of this workbook.)

Differences

Pipes Alerts
Asynchronous;
Messages are sent as soon as
DBMS_PIPE.SEND_MESSAGE is issued, and
rollbacks will not retrieve them.

Transaction-based;
Alerts are not sent until the transaction
containing DBMS_ALERT.SIGNAL is
committed.

If there are multiple sessions waiting for a pipe
message, only one will receive it.

All sessions that are registered for an alert will
receive its message when it is signaled.

The entire contents of the message buffer are
sent, which may include a variety of
information.

Alerts can send only a single character string.

Pipes are used for two-way communication. Alerts are simple one-way messages.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 237

Section M: Communicating Across Sessions

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Create a public pipe named TRAINx_PIPE, where x is your training account number. Submit a
message to the pipe.

Exercise 2
Retrieve a message from a pipe that your neighbor submitted. Are you able to receive each
other's messages? (Remember, pipe names are case sensitive.)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 238

Section M: Communicating Across Sessions

Lesson: Self Check (Continued)

Exercise 3
Create an alert called TRAINx_ALERT, where x is your training account number. Work with a
neighbor to make sure that each of you can register and receive notification from an alert.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 239

Section N: Dynamic SQL

Lesson: Overview

Introduction
Although stored functions and procedures can enhance modularity and flexibility, we have not
yet been able to dynamically create a select statement, for example. Dynamic SQL is a powerful
addition to the PL/SQL toolset.

Objectives
Upon completion of this section, each attendee will be able to

• define the steps necessary to build a dynamic query
• understand the possibilities the package provides by examining examples
• write and execute a dynamic query using a stored function.

Section contents
Overview ..239
Dynamic SQL Steps ...240
Fetching Rows with Dynamic SQL..244
What are all those Quotes? ...245
Execute Immediate ...246
Self Check ..248

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 240

Section N: Dynamic SQL

Lesson: Dynamic SQL Steps

Dynamic SQL
Dynamic SQL became available within PL/SQL 2.1 (Oracle 7.1) and higher.

Dynamic SQL statements are stored in character strings built by your program at run time. Such
strings must contain the text of a valid SQL statement or PL/SQL block. They can also contain
placeholders for bind arguments.

Steps
The steps for executing a statement using DBMS_SQL are the following:

• Assign the SQL statement to a string variable.
• Parse the string (PARSE).
• Bind any input variables (BIND_VARIABLES).
• If the statement is a query, define the output variables (DEFINE_COLUMN).
• Execute the query, and fetch the results using

• EXECUTE
• FETCH_ROWS
• COLUMN_VALUE
• VARIABLE_VALUE

OPEN_ CURSOR
Returns a cursor ID number used to identify the context area in which the statement will be
processed.

PARSE
Sends the statement to the server, where syntax is verified. If the statement is a query, the
execution plan is determined.

BIND_VARIABLE
Binds a variable to a placeholder. Binding is done for input variables.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 241

Section N: Dynamic SQL

Lesson: Dynamic SQL Steps (Continued)

EXECUTE
For a non-query, EXECUTE will carry out the statement and return the number of rows
processed. For a query, EXECUTE will determine the active set. The data is then fetched with
FETCH_ROWS.

VARIABLE_VALUE
Used to determine the value of a bind variable if it is modified by the statement.

COLUMN_VALUE
Used to return the data.

CLOSE_CURSOR
Closes the cursor, and frees all resources used by the cursor.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 242

Section N: Dynamic SQL

Lesson: Dynamic SQL Steps (Continued)

Example 1
CREATE OR REPLACE FUNCTION f_validate_single (pi_owner VARCHAR2,
pi_tablename VARCHAR2, pi_column VARCHAR2, pi_value VARCHAR2)
RETURN VARCHAR2 IS
/**
Powerful way to validate codes. Pass in the owner, table, and column
of the validation table, along with the value you are verifying.
The function will dynamically create a select statement based upon
your parameters. The function returns 'FALSE' if no errors (it
found the entry), and 'TRUE' if no data is found for the value you
are passing.
***/
 lv_statement VARCHAR2(300);
 lv_cursor INTEGER;
 lv_return INTEGER;
 lv_sql_vers CONSTANT INTEGER := 1; -- 1=native; 0=Vers6; 2=Vers7
BEGIN
 lv_statement := 'SELECT '||''''||'X'||''''||
 ' FROM '||pi_owner||'.'||pi_tablename||
 ' WHERE '||pi_column||'='||''''||pi_value||'''';
 lv_cursor := dbms_sql.open_cursor;
 dbms_sql.parse(lv_cursor,lv_statement,lv_sql_vers);
 lv_return := dbms_sql.execute(lv_cursor);
 /*Execute the SQL Command */
IF DBMS_SQL.FETCH_ROWS (lv_cursor) <> 0 THEN RETURN 'FALSE';
ELSE
 RETURN 'TRUE';
END IF;
DBMS_SQL.CLOSE_CURSOR (lv_cursor);
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 lv_err_msg VARCHAR2(207) := 'ERR - '||substr(SQLERRM,1,200);
 BEGIN
 RETURN lv_err_msg;
 END;
END f_validate_single;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 243

Section N: Dynamic SQL

Lesson: Dynamic SQL Steps (Continued)

Example 2
CREATE OR REPLACE function f_get_value (pi_select_column VARCHAR2,
 pi_where_column VARCHAR2, pi_where_value VARCHAR2)
RETURN VARCHAR2 IS
/* Creates a dynamic SQL statement which allows you to select any
column from SWRIDEN (select_column), where a particular column
(where_column) equals a certain value (where_value). */
 lv_statement VARCHAR2(800);
 lv_cursor INTEGER;
 lv_return INTEGER;
 lv_out_value VARCHAR2(2000);
 lv_sql_vers CONSTANT INTEGER := 1; -- 1=native; 0=Vers6; 2=Vers7
BEGIN
 lv_cursor := dbms_sql.open_cursor;
 lv_statement := 'BEGIN
 SELECT '||pi_select_column||
 ' INTO :lv_out_value
 FROM SWRIDEN
 WHERE '||
 pi_where_column||' = :pi_where_value;
 END;';
 dbms_sql.parse(lv_cursor,lv_statement,lv_sql_vers);
 dbms_sql.bind_variable(lv_cursor, ':lv_out_value',
 lv_out_value,2000);
 dbms_sql.bind_variable(lv_cursor, ':pi_where_value',
 pi_where_value,2000);
 lv_return := dbms_sql.execute(lv_cursor);
 dbms_sql.variable_value(lv_cursor, 'lv_out_value', lv_out_value);
 DBMS_SQL.CLOSE_CURSOR(lv_cursor);
 RETURN lv_out_value;
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 lv_err_msg VARCHAR2(207) := 'ERR - '||substr(SQLERRM,1,200);
 BEGIN
 RETURN lv_err_msg;
 END;
END f_get_value;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 244

Section N: Dynamic SQL

Lesson: Fetching Rows with Dynamic SQL

Example
/* Prompts for a column name and table name, and will print the
column contents to the screen. */
DECLARE
 lv_select_column VARCHAR2(200) := '&SELECT_COLUMN';
 lv_table_name VARCHAR2(30) := '&TABLE';
 lv_statement VARCHAR2(800);
 lv_cursor INTEGER;
 lv_return NUMBER;
 lv_out_value VARCHAR2(2000);
 lv_err_msg VARCHAR2(200);
 lv_act_length INTEGER;
 lv_sql_vers CONSTANT INTEGER := 1; -- 1=native; 0=Vers6; 2=Vers7
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 lv_cursor := DBMS_SQL.OPEN_CURSOR;
 lv_statement := 'SELECT '||lv_select_column||
 ' FROM '||LV_TABLE_NAME;
 DBMS_OUTPUT.PUT_LINE(LV_STATEMENT);
 DBMS_SQL.PARSE(lv_cursor,lv_statement,lv_sql_vers);
 DBMS_SQL.DEFINE_COLUMN(lv_cursor,1,lv_out_value,2000);
 lv_return := DBMS_SQL.EXECUTE(lv_cursor);
 LOOP
 IF DBMS_SQL.FETCH_ROWS(lv_cursor) = 0 THEN
 EXIT;
 END IF;
 DBMS_SQL.COLUMN_VALUE(lv_cursor,1,lv_out_value);
 DBMS_OUTPUT.PUT_LINE(LV_OUT_VALUE);
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(lv_cursor);
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 lv_err_msg VARCHAR2(207) := 'ERR - '||substr(SQLERRM,1,200);
 BEGIN
 DBMS_OUTPUT.PUT_LINE(lv_err_msg);
 END;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 245

Section N: Dynamic SQL

Lesson: What are all those Quotes?

Adding Quotes to Dynamic SQL
If you need quotes to appear in the results of your Dynamic SQL there are two ways of
accomplishing this.

1. Add three (3) single quotes to the beginning or end of a literal string to add a single
quote to the output (at the beginning or end of the literal string).

SELECT 'select ''' || table_name || ''', count(*) from ' ||
 table_name || ';'
 FROM user_tables
 ORDER BY table_name;

'SELECT'''||TABLE_NAME||''',COUNT(*)FROM'||TABLE_NAME||';'
select 'HIGH_MATH', count(*) from HIGH_MATH;
select 'HIGH_VERBAL', count(*) from HIGH_VERBAL;
select 'SWBADDR', count(*) from SWBADDR;
select 'SWBPERS', count(*) from SWBPERS;
select 'SWRADDR', count(*) from SWRADDR;
select 'SWRIDEN', count(*) from SWRIDEN;
select 'SWRREGS', count(*) from SWRREGS;
select 'SWRSTDN', count(*) from SWRSTDN;
select 'SWRTEST', count(*) from SWRTEST;
. . .

2. Add four (4) single quotes if you are appending a single quote by itself:

SELECT DISTINCT 'select swraddr_atyp_code, count(*) ' ||
 'from swraddr where swraddr_atyp_code = ''' ||
 swraddr_atyp_code || '''' || ';' my_sql
 FROM swraddr;

MY_SQL
--
select swraddr_atyp_code, count(*) from swraddr where swraddr_atyp_code = 'MA';
select swraddr_atyp_code, count(*) from swraddr where swraddr_atyp_code = 'P1';
select swraddr_atyp_code, count(*) from swraddr where swraddr_atyp_code = 'PR';

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 246

Section N: Dynamic SQL

Lesson: Execute Immediate

Description
Execute Immediate is a built-in command you can use to execute a dynamic SQL statement in
PL/SQL. (Do not confuse this with the function execute_immediate in the dbms_hs_passthrough
package.)

Any valid DML statement can be executed except a SELECT that return more than one row
(SELECT…INTO is allowed). It may also be an anonymous PL/SQL block or a call to a stored
program.

Bind Variables can be passed in the USING clause.

Single-row select statements will have their results returned in the variables in the INTO clause.

Syntax
EXECUTE IMMEDIATE dynamic_sql_string
 [INTO {define_var1 [, define_var2] ... | plsql_record}]
 [USING [IN | OUT | IN OUT] bind_arg1 [,
 [IN | OUT | IN OUT] bind_arg2] ...]
 [{RETURNING | RETURN} INTO bind_arg3 [, bind_arg4] ...];

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 247

Section N: Dynamic SQL

Lesson: Execute Immediate (continued)

Examples
declare
 lv_sql varchar2(500);
begin
 lv_sql := 'create table error_table (prog_name varchar2(30),

err_date date, err_msg varchar2(300))';
 EXECUTE IMMEDIATE lv_sql;
end;
/

declare
 lv_sql varchar2(500);
begin
lv_sql := 'insert into temp values (1, ''Example 2'',
 SYSDATE, ''Hello'')';
 EXECUTE IMMEDIATE lv_sql;
end;
/

declare
 lv_sql varchar2(500);
 lv_val varchar2(50) := 'Dynamic insert statement';
begin
 lv_sql := 'insert into temp values (1,sysdate,:b1)';
 EXECUTE IMMEDIATE lv_sql USING lv_val;
end;
/

declare
 lv_sql varchar2(500);
 lv_val number(9);
 lv_ret varchar2(50);
begin
 lv_sql := 'select count(*) from swriden where swriden_pidm =

:b1';
 lv_val := 12340;
 EXECUTE IMMEDIATE lv_sql INTO lv_ret USING lv_val;

 dbms_output.put_line('Count: '|| lv_ret || ' For Pidm: ' ||
lv_val);

end;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 248

Section N: Dynamic SQL

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Create a procedure p_pidm_tables by running the script in your student_files folder called
SectN_Ex1.sql. The procedure can be used to identify which tables and how many records per
table a person has. This information may be useful in a data cleanup situation.

• The procedure accepts the parameter of pidm and schema owner.
• It retrieves tables from the view ALL_TAB_COLUMNS where the column name is like

'%PIDM%'.
• Then evaluates if a row exists in each table (derived from above step) for the pidm passed

in. If so, print the table name to the screen.

Execute the procedure, passing in your user ID (TRAINxx) and a PIDM from the SWRIDEN
table. This will return how many records for that pidm exist in each of your tables. Run it again
with a different pidm.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 249

Section N: Dynamic SQL

Lesson: Self Check (continued)

Exercise 2
Write an anonymous block that uses the EXECUTE IMMEDIATE built-in to execute an SQL
statement to find out how many address records a person has. Prompt for a PIDM, feeding the
data to a bind variable in the SQL string. Display the results of the SQL statement execution.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 250

Section O: Optimizing Code

Lesson: Overview

Introduction
SQL has been designed to be able to easily query and manipulate the database, and as a
programmer you'll find that there may be multiple ways to 'ask' the Oracle database to perform a
particular task. However, although your process may be working correctly, it is important to
review whether a process is working efficiently.

Optimizing code may seem to be an unnecessary step, but that view can be costly. Although a
database administrator or a network person can enhance the performance of a database, we will
focus on several preventative steps a developer can take to improve his/her application.

Objectives
This section will examine the following:

• Incentives for tuning
• When to tune SQL
• Optimizing statements

Section contents
Overview ..250
Incentives for Tuning ...251
When to Tune SQL...252
Aspects of SQL Tuning..253
How Oracle Processes a SQL Statement..254
The System Global Area ..255
The SQL Optimizer ..256
Rule-Based vs. Cost-Based Optimization ..257
Rule-Based Optimizer Tuning..258
Cost Based Optimizer Tuning ..259
Explain Plan ...260
Autotrace ..263
Explain in SQL Developer ...265
What to Watch..266
Elapsed Times ..267
Self Check ..268

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 251

Section O: Optimizing Code

Lesson: Incentives for Tuning

Incentives
• To improve interactive response time for users
• To improve batch throughput
• To ensure scalability
• To reduce system load
• To avoid hardware upgrades

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 252

Section O: Optimizing Code

Lesson: When to Tune SQL

Timing
Ideally, SQL should be tuned as it is written. Below is a cost analysis of tuning during the life of
an application.

Diagram

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 253

Section O: Optimizing Code

Lesson: Aspects of SQL Tuning

Aspects
• Tuning is an iterative process

o Tune now for performance based on current data
o Tune later as data changes/increases

• Measuring the performance of SQL is critical. Without measurements, we will not know
whether our tuning was helpful

• A wide range of methods exist to improve performance, and it is important to understand
how Oracle processes SQL to know which tool to use

The Tuning Environment
The ideal tuning environment would be one in which:

• data volumes are realistic
o Testing/Tuning on small data volumes does not translate to large data volumes

• system performance requirements are spelled out
• data model documentation is available and is easy to understand
• validation of performance requirement is built in to the quality assurance process (what

are acceptable ranges).
o Is 30 seconds acceptable or does it need to be sub-second (Web Apps)
o Is a 2 hour report acceptable or should it be < 30 minutes

SQL Tuning Techniques
• Rewording your SQL
• Giving Oracle explicit instructions (hints) which direct Oracle to retrieve and process the

data in a particular way
• Creating or changing indexes

o Are there indexes on frequently used columns
• Verifying existing indexes

o Are the indexes valid (i.e. not corrupt)
• Validating table statistics (10g)

o Do all tables have statistics
o Are the statistics up to date

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 254

Section O: Optimizing Code

Lesson: How Oracle Processes a SQL
Statement

Processing
It is important to understand how Oracle processes statements in order to know how to resolve
bottlenecks. When a statement is submitted, the following occurs:

• Check syntax
• Search System Global Area (SGA) for a parsed copy of the same statement
• Search data dictionary for security privileges, synonyms, views, etc.
• Check for a saved search plan
• Calculate search plan
• Save execution plan

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 255

Section O: Optimizing Code

Lesson: The System Global Area

System Global Area (SGA)
The System Global Area can hold statements that have previously been parsed during the
session. Avoiding the step of parsing can save a significant amount of time. However, SQL
cannot be shared within the SGA unless it is identical.

The following statements would not be considered the same according to SGA:
/* Statement 1: Original Statement */
SELECT SWRIDEN_PIDM FROM SWRIDEN WHERE SWRIDEN_ID = '12341';

/* Statement 2: Different Ids */
SELECT SWRIDEN_PIDM FROM SWRIDEN WHERE SWRIDEN_ID = '12340';

/* Statement 3: Different Case */
SELECT SWRIDEN_PIDM FROM SWRIDEN WHERE swriden_id = '12341';

/* Statement 4: Different amount of white space */
SELECT SWRIDEN_PIDM
 FROM SWRIDEN
 WHERE SWRIDEN_ID = '12341';

Therefore, standards among programmers at your institution are important in order to take
advantage of repetitive parsing.

Bind Variables
How can you avoid the case where the variables, such as ID shown above, need to change? If
you use bind variables, then the bind variable references are the same, since bind variables are
not substituted until a statement has been successfully parsed. Since this may mean extra effort
and coding, this should only be attempted when the SQL statement will be used repetitively.
SELECT SWRIDEN_PIDM FROM SWRIDEN WHERE SWRIDEN_ID = :ID;

Note: For static application interfaces such as Oracle Forms, Pro*C, Pro*COBOL, etc.,
statement case, whitespace, and bind variables will always be the same for the same statements.
All users execute the identical SQL statement regardless of the bind variable name or value
supplied.

Table Aliases
A standard should be made for table aliases. If a single table is included in two SQL statements
but under a different alias in each, the SQL statements cannot be shared even if they are
otherwise identical.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 256

Section O: Optimizing Code

Lesson: The SQL Optimizer

Criteria
When a statement is submitted, Oracle chooses the optimal execution plan, or retrieval path, for
the statement. The optimizer considers the following criteria:

• The syntax you have specified for the statement
• Any conditions that the data must satisfy (the WHERE clause)
• The tables your statement will need to access
• Possible indices that can be used in retrieving data from the table
• The RDBMS version
• The current optimizer mode
• SQL statement hints
• Available object statistics (generated via the ANALYZE command)
• INIT.ORA settings

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 257

Section O: Optimizing Code

Lesson: Rule-Based vs. Cost-Based
Optimization

Optimizer types
The type of optimizer Oracle uses is specified via an initialization parameter in the INIT.ORA or
SPFILE.ora file.

Rule-based
The rule-based optimizer uses a predefined set of precedence rules to figure out which path it
will use to access the database. These rules were developed many years ago and have not been
updated by Oracle since Version 7. This method has been formally deprecated in Version 10g
but is still used internally when a hint is specified for an SQL statement.

Cost-based
The cost-based optimizer (delivered in Oracle7) is more sophisticated, but requires more effort
by the database administrator. Rather than relying on a set of standard rules, it requires that all
the referenced tables be analyzed beforehand (except 10g), and table size makes a significant
difference. Therefore, if a table has not been analyzed recently, the optimizer information may
be incorrect causing a less than optimal execution path.

In 10g Oracle will analyze a table and compute new statistics on the fly as it is calculating an
execution path. While this may produce a more optimal plan it takes time to compute those
statistics, especially on large tables. It is the responsibility of the DBA to update those statistics
while end users are not accessing the database so as not to impede performance.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 258

Section O: Optimizing Code

Lesson: Rule-Based Optimizer Tuning

Rules to Observe
The following are some of the Rule Based Optimizer rules that help determine the execution
path. These do not apply to databases running Oracle 10g or the Cost Based Optimizer in earlier
versions.

Table Order
Table order is important in Rule Based Optimization. It evaluates tables from right to left.
Therefore, the table that returns the fewest number of rows should be the last table in the FROM
clause.

WHERE Clause Sequencing
The order in which you specify conditions in the WHERE clause has a major impact on
performance. In the absence of any other information, the rule-based optimizer must use the
WHERE clauses sequencing to help determine the best execution path within the database. If
you are able to specify the more efficient indexed conditions early in your WHERE clause, the
optimizer will be more likely to choose the most efficient execution path.

Two or More Equality Indices
When an SQL statement has two or more equality indices over different tables (Where = value)
available to the execution plan, Oracle uses both indices by merging them at run-time and
fetching only rows that are common to both indices. If two indices exist over the same table in a
WHERE clause, Oracle ranks them. A UNIQUE index will always rank higher than a non-
UNIQUE index.

Index Always Used
The Rule Based Optimizer will always use an index if it finds one that fits the situation. This is
not always optimal; especially for small tables or queries that will return more than 40% of the
rows from the table.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 259

Section O: Optimizing Code

Lesson: Cost Based Optimizer Tuning

No Rules, Just Statistics
There are no pre-set rules that apply to Cost Based Optimization. Many factors are evaluated as
Oracle tries to determine the most efficient path.

Some flexibility in the way the cost-based optimizer works is provided by the following
optimizer mode variations, specified via the OPTIMIZER_MODE initialization parameter.

OPTIMIZER_MODE=FIRST_ROWS_n
A cost-based approach with a goal of best response time to return the first n rows
(where n = 1, 10, 100, 1000)

OPTIMIZER_MODE=FIRST_ROWS
Uses a mix of costs and heuristics to find a best plan for fast delivery of the first few rows

OPTIMIZER_MODE=ALL_ROWS
A cost-based approach with a goal of best overall throughput
(minimum resource use to complete the entire statement)

Timing is Everything
There is a preset amount of time that Oracle takes to determine the optimal execution path. At
the end of that time period, it chooses the most efficient of the paths it calculated. For extremely
complex SQL, Oracle may not have sufficient time to calculate the optimal path. In those cases,
there are ways to “assist” Oracle in using the optimal path.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 260

Section O: Optimizing Code

Lesson: Explain Plan

EXPLAIN PLAN tool
To identify the execution path for a statement, use the tool EXPLAIN PLAN.

Preparation
EXPLAIN_PLAN results detailing the execution plan go into a table called PLAN_TABLE.
The PLAN_TABLE is automatically created in 10g as a global temporary table to hold the
output of an EXPLAIN PLAN statement for all users. If a local PLAN_TABLE is desired,
ORACLE_HOME/rdbms/admin/utlxplan.sql can be run to create a plan_table in a user’s own
schema before running EXPLAIN PLAN.

Example
EXPLAIN PLAN FOR
SELECT swriden_last_name, swriden_first_name
 FROM swriden, twraccd
 WHERE swriden.swriden_pidm = twraccd.twraccd_pidm
 AND swriden.swriden_change_ind IS NULL
 AND twraccd.twraccd_paid_date IS NULL;

Explained.

The “Explain Plan For…” statement does not run the SQL statement; it merely computes the
execution path.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 261

Section O: Optimizing Code

Lesson: Explain Plan (Continued)

Function and examples
Executes a hierarchical query against the plan table to retrieve the execution plan.

SELECT RTRIM(LPAD(' ',2*LEVEL)||
 RTRIM(OPERATION)||' '||
 RTRIM(OPTIONS)||' '||
 OBJECT_NAME) QUERY_PLAN
 FROM PLAN_TABLE
CONNECT BY PRIOR ID=PARENT_ID
START WITH ID=0;

QUERY_PLAN

 SELECT STATEMENT
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL TWRACCD
 SORT JOIN
 TABLE ACCESS FULL SWRIDEN

See how adding an index can change the execution path:

SQL> CREATE INDEX twraccd_index on twraccd(twraccd_pidm);

SQL> EXPLAIN PLAN FOR
SELECT swriden_last_name, swriden_first_name
 FROM swriden, twraccd
 WHERE swriden.swriden_pidm = twraccd.twraccd_pidm
 AND swriden.swriden_change_ind IS NULL
 AND twraccd.twraccd_paid_date IS NULL;

Explained.

QUERY_PLAN
--
 SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SWRIDEN
 TABLE ACCESS BY ROWID TWRACCD
 INDEX RANGE SCAN TWRACCD_INDEX

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 262

Section O: Optimizing Code

Lesson: Explain Plan (Continued)

Query Plan
Interpreting the query plan:

• When reading the query plan, the innermost statement is executed first (indented the
most).

• If the COST= is blank, then the database is using the Rule Based Optimizer.
• The higher the cost, the more “expensive” or resource intensive the SQL statement is.
• Statements at the same level are executed from top to bottom.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 263

Section O: Optimizing Code

Lesson: Autotrace

Autotrace
Autotrace is a utility that can provide an execution plan for your statement as well as execution
statistics. It has an advantage over issuing the explain plan for…statement since it doesn't
require cleaning out the plan table in between executions; nor does it require you to memorize or
store the crypic SQL required to extract data from the plan table.

Requirements
For Autotrace to work the DBA needs run the following script as the user SYS:
$ORACLE_HOME/sqlplus/admin/plustrce.sql. This creates a database role called
PLUSTRACE that needs to be granted to the users who will be using the utility. It also requires
that the user have a plan table (instructions on creating a plan table are above).

Syntax
SET AUTOTRACE ON | OFF | TRACEONLY
SET AUTOTRACE ON { EXPLAIN | STATISTICS }

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 264

Section O: Optimizing Code

Lesson: Autotrace (continued)

Example
SQL> set autotrace traceonly
SQL> SELECT swriden_last_name, swriden_first_name
 2 FROM swriden, twraccd
 3 WHERE swriden.swriden_pidm = twraccd.twraccd_pidm
 4 AND swriden.swriden_change_ind IS NULL
 5 AND twraccd.twraccd_paid_date IS NULL;

18 rows selected.

Execution Plan
--
Plan hash value: 819603857

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		20	1200	7 (15)	00:00:01
* 1	HASH JOIN		20	1200	7 (15)	00:00:01
* 2	TABLE ACCESS FULL	SWRIDEN	10	380	3 (0)	00:00:01
* 3	TABLE ACCESS FULL	TWRACCD	18	396	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("SWRIDEN"."SWRIDEN_PIDM"="TWRACCD"."TWRACCD_PIDM")
 2 - filter("SWRIDEN"."SWRIDEN_CHANGE_IND" IS NULL)
 3 - filter("TWRACCD"."TWRACCD_PAID_DATE" IS NULL)

Statistics
--
 632 recursive calls
 0 db block gets
 155 consistent gets
 15 physical reads
 0 redo size
 821 bytes sent via SQL*Net to client
 392 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 10 sorts (memory)
 0 sorts (disk)
 18 rows processed

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 265

Section O: Optimizing Code

Lesson: Explain in SQL Developer

Description
SQL Developer has a quick and easy way of generating an execution plan.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 266

Section O: Optimizing Code

Lesson: What to Watch

Problem Areas
When examining an execution plan there are a few things that you can spot and examine for
potential tuning opportunities. This is only a small sample. SQL tuning takes time and practice
to learn what to look for and how to fix it.

TABLE ACCESS FULL – means that it is reading each and every row in the table

• Does the table have any indexes? If not, consider creating one or more on frequently
joined columns.

• Are you referencing any columns in the index(es) in your where clause? If so, is at least
one of the columns the first column in a composite index?

• Is the index on a column with low cardinality (small number of unique values)?

• If there is not an index on a table using the column(s) in your join, are these columns
frequently used in a join? If so, consider adding an index.

• Are there a very small number of rows in the table? If so, it may be faster to read all the
rows at once.

• If there is an index that you can use and it's not being used, is the index valid? Could the
index be corrupt?

• Is the column(s) of an index being used in a function (UPPER, TO_CHAR, etc)?
Functions on columns will cause indexes to not be used unless a function-based index has
been created.

MERGE JOIN CARTESIAN – did you forget to join a table?

SORT MERGE JOIN – (see example above)

• sorts are expensive (i.e. resource intensive)

NESTED LOOP – for each row in Table 1 get corresponding rows in Table 2 (example above
after adding index)

• Make sure Table 1 returns the fewest amount of rows

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 267

Section O: Optimizing Code

Lesson: Elapsed Times

SET TIMING ON
As you tune your statements, you will want to know how much more efficient the statement is in
relation to time. Use the SQL*Plus command 'SET TIMING ON' to view the elapsed time
needed for a statement to be executed.

Example
SQL> SET TIMING ON

SQL> SELECT * from dictionary;

TABLE_NAME COMMENTS
------------------------- ---
…
ALL_OUTLINES Synonym for USER_OUTLINES
ALL_OUTLINE_HINTS Synonym for USER_OUTLINE_HINTS
USER_SQLSET_DEFINITIONS Synonym for USER_SQLSET
ALL_OLAP_ALTER_SESSION Synonym for V$OLAP_ALTER_SESSION

662 rows selected.

Elapsed: 00:00:02.81

Other factors
There are other factors relating to elapsed time, including network traffic, other processes
running, etc. However, a consistent improvement in elapsed time will indicate your tuning was
successful.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 268

Section O: Optimizing Code

Lesson: Self Check

Directions
Use the information you have learned in this workbook to complete this self-check activity.

Exercise 1
Set the timing on in your SQL*Plus session and execute the following select statement (if using
SQL Developer, just click on the Execute Explain Plan button):

SELECT SWRADDR_STREET_LINE1, SWRADDR_ZIP, SWRADDR_CITY,
SWRADDR_STAT_CODE
 FROM SWRIDEN, SWRADDR
 WHERE SWRIDEN.SWRIDEN_PIDM = SWRADDR.SWRADDR_PIDM;

Note the amount of time it took for the statement to execute.

Explain the plan for the select statement. (If using SQL Developer, the Explain Tab should have
been activated when you pressed the Execute Explain Plan button.)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 269

Section O: Optimizing Code

Lesson: Self Check (Continued)

Exercise 2
Are indices being used, or is Oracle executing a full-table scan? If no indices are being used,
then create an index for SWRADDR. Rerun Explain Plan and view the results to make sure your
indices are being used. Rerun the Select statement and compare the execution time. Have you
improved the performance of the statement?

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 270

Section P: Appendix

Lesson: Overview

Introduction
This section contains miscellaneous topics of interest.

Section contents
Overview ..270
Table Relationships ..271
Banner APIs ...272
Calling APIs ...273

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 271

Section P: Appendix

Lesson: Table Relationships

Diagram

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 272

Section P: Appendix

Lesson: Banner APIs

Description
Banner APIs are written in PL/SQL and stored in the BANINST1 schema. Each table will
eventually have an API associated with it (except rule and validation tables). This is only a high-
level overview of APIs. For more information on APIs consult the API Developer's Guide or
consider taking the API Course.

PL/SQL Packages
There are two parts to a table level API – DML and Validation. Each DML API consists of a
sing stored package while the Validation API will be three or more packages.

The DML portion of the API is easily identified using the naming convention
DML_<tablename>. This package contains the replacements for standard INSERT, UPDATE,
and DELETE statements against that table. Instead of issuing these standard standard statements
against the table, the API is called instead. The DML API is never called directly – you need to
call the Validation Package which will validate the data before calling the DML package
internally.

The package for the Validation portion of the API is more difficult to locate as it bears the
English name of the API. Each Validation API begins with the letter representing the module (G
– General, P – Payroll, S – Student, F – Finance, etc) and B as the second letter for Business
Entity API. For example, the GOREMAL table validation API name is GB_EMAIL. There will
also be a minimum of two other associated packages GB_EMAIL_STRINGS and
GB_EMAIL_RULES. The STRINGS package contains error messages that are returned by the
API. The RULES package contains the business rules or validation applied to the data for the
table. There may be additional packages for user defined rules that are called by the API (called
User Exits).

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 273

Section P: Appendix

Lesson: Calling APIs

Calling an API
Each high level Validation API (e.g. GB_EMAIL without the STRINGS or RULES extension)
will contain the following procedures:
 P_CREATE – for inserting records into the table
 P_UPDATE – for updating existing records
 P_DELETE – for removing records from the table

Instead of issuing an INSERT statement against a table with an API you should call P_CREATE,
passing as parameters the values for each column in the table (optional columns may be omitted).

When calling APIs to manipulate table records, you can no longer use the standard COMMIT or
ROLLBACK statements. You must call GB_COMMON.P_COMMIT or
GB_COMMON.P_ROLLBACK for those functions. These special procedures are designed to
properly process API messages from validation problems that may have occurred.

Example (from BWGKOADR Self Service package):
DECLARE
 lv_rowid gb_common.internal_record_id_type;
 lv_seqno PLS_INTEGER;
BEGIN
 gb_telephone.p_create (
 p_pidm => pidm,
 p_tele_code => teles (i),
 p_phone_area => areas (i),
 p_phone_number => phones (i),
 p_phone_ext => exts (i),
 p_atyp_code => atyp,
 p_addr_seqno => aseqno,
 p_primary_ind => NULL,
 p_unlist_ind => unl_tab (i),
 p_intl_access => accss (i),
 p_data_origin => gb_common.DATA_ORIGIN,
 p_user_id => gb_common.f_sct_user,
 p_seqno_out => lv_seqno,
 p_rowid_out => lv_rowid
);
 gb_common.p_commit;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 274

Section Q: Self Check - Answer Key

Lesson: Section B

Exercise 1
What are the three main parts of a PL/SQL block?

Declaration
Execution
Exception

Also acceptable are: Header (for stored PL/SQL) Declare, Begin/End, and Exception

Exercise 2
Describe an anonymous block.

A block that has no name and is not stored in the database.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 275

Section Q: Self Check - Answer Key

Lesson: Section C

Exercise 1
How can you create a variable that has the same characteristics as a column in the database?

Use the %TYPE designator (e.g. my_var table.column%TYPE)

Exercise 2
Mark the following as legal or illegal definitions:

lv_Pidm NUMBER; (Legal)
lv_Pidm NUMBER(8) := null; (Legal)
lv_PIDM NUMBER(8) := 0; (Legal)

lv_PIDM NUMBER(8) NOT NULL; (Illegal)

Must supply a value when using NOT NULL

lv_name varchar2; (Illegal)

 Must supply a size when declaring VARCHAR2 datatypes

lv_state char; (Legal)

 NOTE: while legal creates a character variable with length one (char(1))

lv_today date := '01/01/2003'; (Illegal)

 If not in Oracle's default date format must use to_date function with format mask

lv_state varchar2(4) := 'FLORIDA'; (Illegal)

 Assignment is larger than variable declaration

update varchar2(7) := 'FLORIDA'; (Illegal)

 Cannot use reserved words to declare variables

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 276

Section Q: Self Check - Answer Key

Lesson: Section D

Exercise 1
Write a PL/SQL block to insert a row about you into SWRIDEN. The values for the insert must
be declared in a declaration section. (Either prompt for the values using the &variable
convention or hard code the values in the declaration section.) Check to make sure your row was
inserted.

DECLARE
 lv_pidm NUMBER (8) := &pidm;
 lv_last_name VARCHAR2 (30) := '&last_name';
 lv_first_name VARCHAR2 (15) := '&first_name';
 lv_id VARCHAR2 (9) := '&id';
BEGIN
 INSERT INTO swriden
 (swriden_pidm, swriden_ID, swriden_last_name,
 swriden_first_name, swriden_activity_date)
 VALUES (lv_pidm, lv_id, lv_last_name,
 lv_first_name, SYSDATE);
 COMMIT;

END;
 /

Enter value for pidm: 87654
Enter value for last_name: Scrooge
Enter value for first_name: Ebenezer
Enter value for id: 333445555

PL/SQL procedure successfully completed.

SQL> select * from swriden where swriden_pidm = 87654;

SWRIDEN_PIDM SWRIDEN_I SWRIDEN_LAST_NAME SWRIDEN_FIRST_N

SWRIDEN_MI
------------ --------- ------------------------- --------------- --

S SWRIDEN_A
- ---------
 87654 333445555 Scrooge Ebenezer
 22-DEC-06

1 row selected.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 277

Section Q: Self Check - Answer Key

Lesson: Section E

Exercise 1
What are the four types of loops?

• Simple Loops
• Numeric Loops
• WHILE Loops
• Cursor FOR Loops

Exercise 2
Write a PL/SQL block that will conditionally execute for the following conditions. Your script
should ask the user for a value.

• If x = 20, then add 10
• If x = 30, then add 20
• If x = 40, then add 30
• If x = 50, then add 40

declare
 lv_in number(2);
 lv_out number(2);
 lv_error varchar2(50) := 'Enter a number 20 to 50; multiples of 10';
begin
 lv_in := &enter_number;
 case lv_in
 when 20 then lv_out := lv_in + 10;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 30 then lv_out := lv_in + 20;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 40 then lv_out := lv_in + 30;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 50 then lv_out := lv_in + 40;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 else
 dbms_output.put_line(lv_error);
 end case;
end;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 278

Section Q: Self Check - Answer Key

Lesson: Section E (Continued)

Exercise 3
Using a loop, write a PL/SQL block that inserts values and the date that value was calculated into
the TEMP table. Values should be between 1 and 20. Check the TEMP table to make sure the
values were added.

BEGIN
 FOR my_index IN 1..20 LOOP
 INSERT INTO temp (col1, col2, Message)
 VALUES (my_index, sysdate, 'Exercise E-4');
 END LOOP;

 COMMIT;
END;

 /

SQL> Select * from temp;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 279

Section Q: Self Check - Answer Key

Lesson: Section F

Exercise 1
What are three advantages of using PL/SQL Error Handling?

Some examples:

• Event driven handling of errors
• Separation of error-processing code
• No need to code multiple checks
• Isolates error-handling routines and improves readability of code

Exercise 2
What are three types of PL/SQL exceptions?

• Named system exceptions
• Named programmer-defined exceptions
• Unnamed system exceptions

Exercise 3
Identify the type of PL/SQL exceptions in the following examples:

… DECLARE my_exception Exception;

Named programmer-defined exceptions

…PRAGMA EXCEPTION_INIT my_exception, 1025;

Unnamed system exception

DECLARE…
BEGIN…
…….
EXCEPTION
WHEN OTHERS THEN
 ROLLBACK;
END;
end

Unnamed system exception

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 280

Section Q: Self Check - Answer Key

Lesson: Section F (Continued)

Exercise 4
Redo Exercise 1 from Section E to raise a user-defined exception if the number entered is not 20,
30, 40, or 50. Process the error in an exception handler and display an appropriate message.

DECLARE
 lv_in number(2);
 lv_out number(2);
 lv_error varchar2(50) := 'Enter a number 20 to 50; multiples of 10';
 invalid_entry EXCEPTION;
BEGIN
 lv_in := &enter_number;
 case lv_in
 when 20 then lv_out := lv_in + 10;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 30 then lv_out := lv_in + 20;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 40 then lv_out := lv_in + 30;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 when 50 then lv_out := lv_in + 40;
 dbms_output.put_line('Old: ' || lv_in || ' New: ' || lv_out);
 else
 raise invalid_entry;
 end case;

 EXCEPTION
 WHEN invalid_entry THEN
 dbms_output.put_line(lv_error);
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 281

Section Q: Self Check - Answer Key

Lesson: Section G

Exercise 1
Write a PL/SQL script using a cursor to display the id, last_name and first_name from
SWRIDEN.

DECLARE
 cursor name_cursor is
 SELECT swriden_id, swriden_last_name, swriden_first_name
 FROM swriden
 WHERE swriden_change_ind is null;
 lv_id swriden.swriden_id%type;
 lv_lname swriden.swriden_last_name%type;
 lv_fname swriden.swriden_first_name%type;

BEGIN
 dbms_output.enable;
 OPEN name_cursor;
 LOOP
 FETCH name_cursor into lv_id, lv_lname, lv_fname;
 EXIT WHEN name_cursor%notfound;
 dbms_output.put_line(lv_id||' '|| lv_lname||' '|| lv_fname);
 END loop;
 CLOSE name_cursor;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 282

Section Q: Self Check - Answer Key

Lesson: Section G (Continued)

Exercise 2
Write a PL/SQL script that prompts for a pidm, and selects all columns from the person table,
SWBPERS, based upon that pidm. Rather than explicitly declaring all the host variables, use
%ROWTYPE. Select the columns by using the SELECT INTO statement. Display the SSN and
birth date variables using DBMS_OUTPUT.PUT_LINE. If no record is found, then display an
error message to the user.

DECLARE
 swbpers_rec swbpers%ROWTYPE;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 SELECT *
 INTO swbpers_rec
 FROM swbpers
 WHERE swbpers_pidm = &PIDM;
 DBMS_OUTPUT.PUT_LINE(swbpers_rec.swbpers_ssn||' '||
 swbpers_rec.swbpers_birth_date);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No person record for this pidm ');
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 283

Section Q: Self Check - Answer Key

Lesson: Section G (Continued)

Exercise 3
Create a PL/SQL script which selects the pidm, id, first_name || last_name (column alias of
'name') and change indicator from SWRIDEN. Select both current rows (change_ind is null) and
non-current rows from SWRIDEN (change_ind is NOT null). Sort by pidm and change
indicator.

Write each pidm, id, and name using the DBMS_OUTPUT package. If the change indicator is
null, specify that the record is 'Current' when writing the line. If the change indicator is not null,
specify 'Historical'. Run your script.

DECLARE
 CURSOR swriden_cursor IS
 SELECT swriden_pidm, swriden_id, swriden_first_name
 ||' '||swriden_last_name name,
 DECODE(swriden_change_ind, null, 'Current',
 'Historical') historical_ind
 FROM swriden
 ORDER BY swriden_pidm, swriden_activity_date;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 FOR swriden_rec IN swriden_cursor LOOP
 DBMS_OUTPUT.PUT_LINE(swriden_rec.swriden_pidm||' '||
 swriden_rec.swriden_id||' '||swriden_rec.name||' '||
 swriden_rec.historical_ind);
 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 284

Section Q: Cursors, Records, and Tables

Lesson: Section G (Continued)

Exercise 4
Starting with Exercise 3, using an IF statement, alter your script so that the person information
(SSN and birth date) is displayed for current rows and is not displayed for the historical records
(change indicator is not null).

DECLARE
 CURSOR swriden_cursor IS
 SELECT swriden_pidm, swriden_id, swriden_first_name
 ||' '||swriden_last_name name,
 DECODE(swriden_change_ind,null, 'Current',
 'Historical') historical_ind
 FROM swriden
 ORDER BY swriden_pidm, swriden_activity_date;
 lv_birth_date swbpers.swbpers_birth_date%TYPE;
 lv_ssn swbpers.swbpers_ssn%TYPE;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 FOR swriden_rec IN swriden_cursor LOOP
 DBMS_OUTPUT.PUT_LINE(swriden_rec.swriden_pidm||' '||
 swriden_rec.swriden_id||' '||swriden_rec.name||' '||
 swriden_rec.historical_ind);
 IF swriden_rec.historical_ind = 'Current' THEN
 BEGIN
 SELECT swbpers_birth_date,swbpers_ssn
 INTO lv_birth_date,lv_ssn
 FROM swbpers
 WHERE swbpers_pidm = swriden_rec.swriden_pidm;
 DBMS_OUTPUT.PUT_LINE(lv_birth_date||' '||lv_ssn);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No SWPBERS record for this
person.');
 END;
 END IF;
 END LOOP;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 285

Section Q: Cursors, Records, and Tables

Lesson: Section G (Continued)

Exercise 5
Create a PL/SQL script that selects the pidm and birth date from SWBPERS into a PL/SQL
table. Sort by birth date.

Using the PL/SQL table, display the pidm and birth date when the birth date is equal to or greater
than '01-JAN-1970', evaluating each record one at a time. Once a record's information is
displayed, remove the record from the PL/SQL Table (NOT the SWBPERS table).

DECLARE
 TYPE persontabtype IS TABLE OF swbpers%ROWTYPE
 INDEX BY BINARY_INTEGER;
 person_rec persontabtype;
 lv_counter NUMBER(6) := 0;
 CURSOR person_cursor IS
 SELECT *
 FROM swbpers
 ORDER BY swbpers_birth_date;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 OPEN person_cursor;
 LOOP
 lv_counter := lv_counter + 1;
 FETCH person_cursor INTO person_rec(lv_counter);
 EXIT WHEN person_cursor%NOTFOUND;
 IF person_rec(lv_counter).swbpers_birth_date >=
 TO_DATE('01-JAN-1970','DD-MON-YYYY') THEN
 DBMS_OUTPUT.PUT_LINE(person_rec(lv_counter).swbpers_pidm||
 ' '||person_rec(lv_counter).swbpers_birth_date);
 person_rec.delete(lv_counter);
 END IF;
 END LOOP;
 CLOSE person_cursor;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 286

Section Q: Cursors, Records, and Tables

Lesson: Section G (Continued)

Exercise 6
Using the script from the previous exercise, display the pidm and birth date for all records where
the birth date is less than '01-JAN-1970'. You should not have to reevaluate the birth date
condition, because records whose birth dates were equal to or greater than '01-JAN-1970' were
deleted in the previous step.
Note: Be sure to make use of some PL/SQL table attributes.

DECLARE
 TYPE persontabtype IS TABLE OF swbpers%ROWTYPE
 INDEX BY BINARY_INTEGER;
 person_rec persontabtype;
 lv_counter NUMBER(6) := 0;
 lv_total_records NUMBER(6) := 0;
 CURSOR person_cursor IS
 SELECT *
 FROM swbpers
 ORDER BY swbpers_birth_date;
 lv_date VARCHAR2(11) := '01-JAN-1970';
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 OPEN person_cursor;
 LOOP
 lv_counter := lv_counter + 1;
 FETCH person_cursor INTO person_rec(lv_counter);
 EXIT WHEN person_cursor%NOTFOUND;
 IF person_rec(lv_counter).swbpers_birth_date >=
 TO_DATE(lv_date,'DD-MON-YYYY') THEN
-- DBMS_OUTPUT.PUT_LINE(person_rec(lv_counter).swbpers_pidm||
-- ' '||person_rec(lv_counter).swbpers_birth_date);
 person_rec.delete(lv_counter);
 END IF;
 END LOOP;
 CLOSE person_cursor;
 lv_total_records := person_rec.count;
 lv_counter := person_rec.first;
 DBMS_OUTPUT.PUT_LINE(chr(10)||'Records Before '||lv_date);
 FOR i IN 1..lv_total_records LOOP
 DBMS_OUTPUT.PUT_LINE(person_rec(lv_counter).swbpers_pidm
 ||' '||person_rec(lv_counter).swbpers_birth_date);
 lv_counter := person_rec.next(lv_counter);
 END LOOP;
END;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 287

Section Q: Self Check - Answer Key

Lesson: Section H

Exercise 1
In the account table TWRACCD, an amount is considered unpaid if the PAID_DATE is null.
Create a stored function called calc_amt_owed, which returns the sum amount of unpaid bills
when a pidm is passed.

CREATE OR REPLACE FUNCTION calc_amt_owed (pi_pidm in NUMBER) RETURN
NUMBER
IS
 lv_total_owed NUMBER(9,2) := 0;
BEGIN
 SELECT SUM(twraccd_amount)
 INTO lv_total_owed
 FROM twraccd
 WHERE twraccd_PAID_DATE IS NULL
 AND twraccd_pidm = pi_pidm;
 RETURN lv_total_owed;
EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN 0;
END;

 /

Exercise 2
Select the first name, last name, and amount owed, using the function you just created.

SELECT swriden_first_name, swriden_last_name,
calc_amt_owed(swriden_pidm)
 FROM swriden
 WHERE swriden_change_ind is null;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 288

Section Q: Self Check - Answer Key

Lesson: Section H (Continued)

Exercise 3
Create a procedure called insert_acct_info that inserts an account transaction into the account
table (TWRACCD). The procedure should have parameters for:

• PIDM
• TERM_CODE
• DETC_CODE
• TRANS_TYPE

• BILL_DATE
• PAID_DATE
• AMOUNT

ACTIVITY_DATE should be automatically derived within the procedure.

Be sure to test your procedure by calling the procedure to insert a record.

CREATE OR REPLACE PROCEDURE insert_acct_info
 (pi_pidm IN NUMBER, pi_term_code IN VARCHAR2,
 pi_detc_code IN VARCHAR2, pi_trans_type IN VARCHAR2,
 pi_bill_date IN DATE, pi_paid_date IN DATE, pi_amount IN NUMBER)
IS
BEGIN
 DBMS_OUTPUT.ENABLE;
 INSERT INTO twraccd (twraccd_pidm, twraccd_term_code,
 twraccd_detc_code, twraccd_trans_type, twraccd_bill_date,
 twraccd_paid_date, twraccd_amount, twraccd_activity_date)
 VALUES (pi_pidm, pi_term_code, pi_detc_code, pi_trans_type,
 pi_bill_date, pi_paid_date, pi_amount, SYSDATE);

 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error inserting into twraccd.');
END;
 /

BEGIN
 insert_acct_info(&pidm, &term_code, '&detc_code', '&trans_type',
 '&bill_date', '&paid_date', &amount);
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 289

Section Q: Self Check - Answer Key

Lesson: Section H (Continued)

Exercise 4
Create a procedure that inserts into the TEMP table when an error occurs in a script (replacing
the bolded code below). The procedure should pass in the error code and error message.

...

WHEN OTHERS THEN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1, 55);
 ROLLBACK;
 INSERT INTO temp (col1, col2, message)
 VALUES (lv_sqlcode, sysdate, lv_sqlerrm);
 COMMIT;

CREATE OR REPLACE PROCEDURE insert_errors
 (pi_err_code IN NUMBER, pi_err_msg IN VARCHAR2) IS
BEGIN
 DBMS_OUTPUT.ENABLE;
 INSERT INTO TEMP (col1, col2, message)
 VALUES (pi_err_code, sysdate, pi_err_msg);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error inserting into TEMP.');
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 290

Section Q: Self Check - Answer Key

Lesson: Section H (Continued)

Exercise 5
Write a quick PL/SQL script that causes an error, such as retrieving multiple rows into a
SELECT INTO statement, and calls your procedure in Exercise 4 when it encounters the error.
Select from the TEMP table to make sure that the error handler is working properly.

DECLARE
 lv_dummy VARCHAR2(1);
 lv_sqlcode NUMBER(6);
 lv_sqlerrm VARCHAR2(55);
BEGIN
 SELECT swriden_last_name
 INTO lv_dummy
 FROM swriden;
EXCEPTION
 WHEN OTHERS THEN
 lv_sqlcode := SQLCODE;
 lv_sqlerrm := SUBSTR(SQLERRM, 1,55);
 Insert_errors(lv_sqlcode, lv_sqlerrm);
END;

/
 SQL> Select * from temp;

Exercise 6
Locate your newly created PL/SQL objects in the database using USER_OBJECTS,
USER_SOURCE, and USER_DEPENDENCIES.

SQL> SELECT object_name, status FROM USER_OBJECTS
 2 WHERE object_type in ('FUNCTION','PROCEDURE');

SQL> SELECT line, text FROM user_source;

SQL> SELECT name, type, referenced_owner, referenced_name
 2 FROM user_dependencies

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 291

Section Q: Self Check - Answer Key

Lesson: Section I

Exercise 1
e. Create a package called 'Account' containing both the insert_acct_info procedure and the

calc_amt_owed function created in Section H.
f. Overload the account package, so that there are now two functions are called calc_amt_owed.

The second function should accept the parameters of pidm and term code, and return the sum
of the amount owed for that term code.

g. Use what you have learned to add to the exception handler for the insert_acct_info procedure,
so that the message displayed indicates the nature of the error (i.e. incorrect parameters).

h. Execute the procedure and both functions from the package.

CREATE OR REPLACE PACKAGE ACCOUNT IS
 FUNCTION calc_amt_owed (pi_pidm IN NUMBER) RETURN NUMBER;

 FUNCTION calc_amt_owed (pi_pidm IN NUMBER,
 pi_term IN VARCHAR2) RETURN NUMBER;

 PROCEDURE insert_acct_info (pi_pidm IN NUMBER,
 pi_term_code IN VARCHAR2, pi_detc_code IN VARCHAR2,
 pi_trans_type IN VARCHAR2, pi_bill_date IN DATE,
 pi_paid_date IN DATE, pi_amount IN NUMBER);
END ACCOUNT;
/
CREATE OR REPLACE PACKAGE BODY ACCOUNT
IS
 FUNCTION calc_amt_owed (pi_pidm in NUMBER) RETURN NUMBER
 IS
 lv_total_owed NUMBER(9,2) := 0;
 BEGIN
 SELECT NVL(SUM(twraccd_amount),0)
 INTO lv_total_owed
 FROM twraccd
 WHERE twraccd_PAID_DATE IS NULL
 AND twraccd_pidm = pi_pidm;
 RETURN lv_total_owed;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN 0;
 END calc_amt_owed;
--
(Continued…)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 292

Section Q: Self Check - Answer Key

Lesson: Section I (Continued)

Exercise 1 (cont.)
FUNCTION calc_amt_owed (pi_pidm IN NUMBER, pi_term IN VARCHAR2)
 RETURN NUMBER
 IS
 lv_total_owed NUMBER (9, 2) := 0;
BEGIN

 SELECT NVL(SUM(twraccd_amount),0)
 INTO lv_total_owed
 FROM twraccd
 WHERE twraccd_paid_date IS NULL
 AND twraccd_pidm = pi_pidm AND twraccd_term_code = pi_term;

 RETURN lv_total_owed;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 0;
END calc_amt_owed;

PROCEDURE insert_acct_info
 (pi_pidm IN NUMBER, pi_term_code IN VARCHAR2,
 pi_detc_code IN VARCHAR2, pi_trans_type IN VARCHAR2,
 pi_bill_date IN DATE, pi_paid_date IN DATE, pi_amount IN NUMBER)
IS
 BEGIN
 DBMS_OUTPUT.ENABLE;
 INSERT INTO twraccd (twraccd_pidm, twraccd_term_code,
 twraccd_detc_code, twraccd_trans_type, twraccd_bill_date,
 twraccd_paid_date, twraccd_amount, twraccd_activity_date)
 VALUES (pi_pidm, pi_term_code, pi_detc_code, pi_trans_type,
 pi_bill_date, pi_paid_date, pi_amount, SYSDATE);
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error inserting into twraccd.'
 ||SUBSTR(SQLERRM, 1,120));
 END insert_acct_info;

END ACCOUNT;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 293

Section Q: Self Check - Answer Key

Lesson: Section I (Continued)

Then execute the following to test the functions and the procedure:

-- test the smart function:

SELECT SWRIDEN_FIRST_NAME, SWRIDEN_LAST_NAME,
TO_CHAR(account.calc_amt_owed(swriden_pidm),'$99,990.00') owed

 FROM swriden
 WHERE SWRIDEN_CHANGE_IND IS NULL;

SELECT SWRIDEN_FIRST_NAME, SWRIDEN_LAST_NAME,
TO_CHAR(account.calc_amt_owed(swriden_pidm,'200701'),'$99,990.00') owed
 FROM swriden
 WHERE SWRIDEN_CHANGE_IND IS NULL;

-- test the procedure
BEGIN
 account.insert_acct_info
 (12340,'200701','BOOK','C','01-SEP-2007','15-SEP-2007',456.10);
END;
/

-- force an error (term code too long) to test the exception handler
BEGIN
 account.insert_acct_info
 (12340,'2007011','TUIT','C','01-SEP-2007',null,1200);
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 294

Section Q: Self Check - Answer Key

Lesson: Section J

Exercise 1
Write a script that generates a random number and a random string. Use the package
DBMS_RANDOM to generate the values and DBMS_OUTPUT to display them.

DECLARE
 lv_random_string VARCHAR2(50);
 lv_random_number NUMBER;
BEGIN
 SELECT DBMS_RANDOM.NORMAL
 INTO lv_random_number
 FROM dual;
 DBMS_OUTPUT.put_line('Random Number: ' || lv_random_number);
 SELECT DBMS_RANDOM.STRING('U',22)
 INTO lv_random_string
 FROM dual;
 DBMS_OUTPUT.put_line('Random String: ' || lv_random_string);
 END;
/

(Your results may vary)
Random Number: .2236519623199132545128883528399287099182
Random String: NCYGBBUCLCWXYYNFQBXHJX

PL/SQL procedure successfully completed.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 295

Section Q: Self Check - Answer Key

Lesson: Section J (continued)

Exercise 2
Write a script to use the SYS_CONTEXT built in and at least 3 of the attributes to display
information about your session. Display those values using DBMS_OUTPUT.

DECLARE
 lv_userenv1 VARCHAR2(50) := 'SESSION_USER';
 lv_userenv2 VARCHAR2(50) := 'HOST';
 lv_userenv3 VARCHAR2(50) := 'NLS_DATE_FORMAT';
 lv_userenv_val1 VARCHAR2(50);
 lv_userenv_val2 VARCHAR2(50);
 lv_userenv_val3 VARCHAR2(50);
BEGIN
 SELECT SYS_CONTEXT ('USERENV', lv_userenv1)
 INTO lv_userenv_val1
 FROM dual;
 DBMS_OUTPUT.put_line(lv_userenv1 || ': ' || lv_userenv_val1);
 SELECT SYS_CONTEXT ('USERENV', lv_userenv2)
 INTO lv_userenv_val2
 FROM dual;
 DBMS_OUTPUT.put_line(lv_userenv2 || ': ' || lv_userenv_val2);
 SELECT SYS_CONTEXT ('USERENV', lv_userenv3)
 INTO lv_userenv_val3
 FROM dual;
 DBMS_OUTPUT.put_line(lv_userenv3 || ': ' || lv_userenv_val3);
END;
/

SESSION_USER: TRAIN01
HOST: SCT\MAL12345
NLS_DATE_FORMAT: DD-MON-RR

PL/SQL procedure successfully completed.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 296

Section Q: Self Check - Answer Key

Lesson: Section J (continued)

Exercise 3
Create a table with a CLOB column and an Identifier column. Insert a row into the table using
the EMPTY_CLOB() built in. Write a string to the CLOB record you just created. Append the
same value to that CLOB. Show the length of the LOB after the write and append.

Run your procedure again. What happens to the length and why?

create table lob_table (
 lob_id number(3),
 document CLOB);

insert into lob_table values(3,empty_clob());

commit;

DECLARE
 lv_lobholder CLOB;
 lv_buffer VARCHAR2(32000);
 lv_oldsize NUMBER := 20;
 lv_newsize NUMBER;
 lv_offset NUMBER := 1;
BEGIN
 --Initialize buffer with data to be inserted
 lv_buffer := 'abc123def456ghi789jkl012mno345pqr678stu910vwx234yz56';
 lv_oldsize := length(lv_buffer);
 dbms_output.put_line(lv_buffer);
 dbms_output.put_line(to_char(lv_oldsize));
 SELECT document INTO lv_lobholder -- get LOB handle
 FROM lob_table
 WHERE lob_id = 3 FOR UPDATE;
 dbms_lob.write(lv_lobholder,lv_oldsize,lv_offset,lv_buffer);
 dbms_lob.append(lv_lobholder,lv_buffer);
 lv_newsize := dbms_lob.getlength(lv_lobholder);
 dbms_output.put_line(lv_newsize);
 COMMIT;
END;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 297

Section Q: Self Check - Answer Key

Lesson: Section J (continued)

Exercise 3 (continued)

abcdefghijklmnopqrstuvwxyz
52
104

PL/SQL procedure successfully completed.

SQL> /
abcdefghijklmnopqrstuvwxyz
52
156

PL/SQL procedure successfully completed.

The size keeps increasing because the WRITE only overwrites the first 52 characters. The
APPEND keeps appending to the end. Use the ERASE command if you want to overwrite the
entire contents of the LOB.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 298

Section Q: Self Check - Answer Key

Lesson: Section K

Exercise 1
Create a sequence.

CREATE SEQUENCE my_seq start with 1;

Exercise 2
Test the sequence by selecting the first value.

SELECT my_seq.nextval from dual;

Exercise 3
Create a database trigger on SWBPERS. For each update statement, insert into the temp table a
value from the above sequence, the current date, and the user making the update. Write a
statement to update a row in the SWBPERS table and view the results of the trigger in the temp
table (don't forget to commit your update).

CREATE OR REPLACE TRIGGER after_swbpers
 AFTER UPDATE ON swbpers
BEGIN
 INSERT INTO temp (col1, col2, message)
 VALUES (my_seq.nextval, SYSDATE, user);
END After_swbpers;

UPDATE swbpers SET SWBPERS_SSN = 111223333
WHERE swbpers_pidm = 12345;
COMMIT;

 SELECT * from temp where col2 like sysdate;

 COL1 COL2 MESSAGE
---------- --------- ------------------------------
 1 24-NOV-06 TRAIN01

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 299

Section Q: Self Check - Answer Key

Lesson: Section K (Continued)

Exercise 4
Create a database trigger on the SWRIDEN table. For every row inserted, check to see if a
current row exists (change_ind is null). Update the original current row so that the change
indicator is an I (ID change) or an N (name change), depending on the type of change. Write an
insert statement for the SWRIDEN table that results in a change to an existing record's ID or
Name (do not insert a record for a new person). After committing your insert, check the table to
see if the previous record for that PIDM was updated correctly.

CREATE OR REPLACE TRIGGER check_swriden_row
 BEFORE INSERT ON swriden
 FOR EACH ROW
BEGIN
DECLARE
 lv_lname swriden.swriden_last_name%type;
 lv_fname swriden.swriden_first_name%type;
 lv_id swriden.swriden_id%type;
 lv_ch_ind_val swriden.swriden_change_ind%type;
BEGIN
 SELECT swriden_id, swriden_last_name, swriden_first_name
 INTO lv_id, lv_lname, lv_fname
 FROM swriden
 WHERE swriden_change_ind IS NULL
 AND swriden_pidm = :new.swriden_pidm;

 IF lv_id != :new.swriden_id
 THEN lv_ch_ind_val := 'I';
 ELSIF (lv_lname != :new.swriden_last_name)
 OR (lv_fname != :new.swriden_first_name)
 THEN lv_ch_ind_val := 'N';
 END IF;

 UPDATE swriden
 SET swriden_change_ind = lv_ch_ind_val,
 swriden_activity_date = SYSDATE
 WHERE swriden_pidm = :new.swriden_pidm
 AND swriden_change_ind IS NULL;
END;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
END check_swriden_row;

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 300

Section Q: Self Check - Answer Key

Lesson: Section K (Continued)

Exercise 4 (continued)
SQL> select swriden_pidm PIDM, swriden_id ID, swriden_last_name,
 swriden_first_name, swriden_mi
 from swriden
 where swriden_change_ind is null
SQL> /

PIDM ID SWRIDEN_LAST_NAME SWRIDEN_FIRST_N SWRIDEN_MI
------ --------- ---------------------- --------------- --------------
 12340 157834585 Brown Julie K
 12341 5829934 Smith Robert E
 12342 3539543 Johnson Peter S
 12343 145672112 Jones-Erickson Sandy J
 12344 692568211 Erickson Ralph L
 12345 578549991 Erickson Susan T
 12346 543853339 White Nancy Carol
 12347 543853339 Marx Joan Elizabeth
 12348 543853339 Clifford Stephanie Geena
 12349 543853339 Serum Tracy Paige
 87654 333445555 Scrooge Ebenezer

11 rows selected.

SQL> insert into swriden values
 (12346,543853339,'Purple','Nancy','Carol',null,sysdate);

SQL> commit;

Commit complete.

SQL> select swriden_pidm PIDM, swriden_id, swriden_last_name,
 2 swriden_first_name FIRST, swriden_mi,
 3 swriden_change_ind CHG_IND, swriden_activity_date ACT_DATE
 4* from swriden where swriden_pidm = 12346;

 PIDM SWRIDEN_I SWRIDEN_LAST_NAME FIRST SWRIDEN_MI C ACT_DATE
----- --------- ----------------- ----------- ----------- - ---------
12346 543853339 White Nancy Carol N 22-DEC-06
12346 543853339 Purple Nancy Carol 22-DEC-06

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 301

Section Q: Self Check - Answer Key

Lesson: Section L

Exercise 1
Create a directory object in the database that points to a directory supplied by the instructor. To
ensure each class user creates a unique directory name, include your initials in the name of the
directory.

CREATE OR REPLACE DIRECTORY <YOUR_INIT>_PLSQLCLASS as
 '<path supplied by instructor>';

Exercise 2
Create a package called MY_TOOLS containing a stored procedure called DISPLAY_SOURCE.
The procedure should accept the parameters of a directory name, output file name, and
subprogram name. The DISPLAY_SOURCE procedure will retrieve the source code from
USER_SOURCE for the program passed is as the subprogram name and write it to a file.

Execute the packaged procedure, and passing the directory you created above, a file name such
as <Your Initials>_ex2.txt (e.g. abc_ex2.txt), and the name of one of the stored programs you
created in class (e.g. CALC_AMT_OWED, ACCOUNT, INSERT_ERRORS).

CREATE OR REPLACE PACKAGE my_tools IS
 PROCEDURE display_source (pi_directory IN VARCHAR2,
 pi_filename IN VARCHAR2,
 pi_subprogram IN VARCHAR2);
END;
/

(continued…)

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 302

Section Q: Self Check - Answer Key

Lesson: Section L (Continued)

CREATE OR REPLACE PACKAGE BODY my_tools
IS
 PROCEDURE display_source (pi_directory IN VARCHAR2,
 pi_filename IN VARCHAR2,
 pi_subprogram IN VARCHAR2)
 IS
 lv_out_file UTL_FILE.file_type;

 CURSOR source_cursor
 IS
 SELECT name, text
 FROM user_source
 WHERE name = pi_subprogram

 ORDER BY name, line;
 BEGIN
 lv_out_file := UTL_FILE.fopen (pi_directory, pi_filename, 'w');

 FOR source_rec IN source_cursor
 LOOP
 UTL_FILE.put_line (lv_out_file, source_rec.text);
 END LOOP;

 UTL_FILE.fclose(lv_out_file);

 EXCEPTION
 WHEN UTL_FILE.invalid_path
 THEN
 DBMS_OUTPUT.put_line ('Invalid path');
 WHEN OTHERS
 THEN
 DECLARE
 err_msg VARCHAR2 (200) := SUBSTR (SQLERRM, 1, 200);
 BEGIN
 DBMS_OUTPUT.put_line (err_msg);
 IF UTL_FILE.is_open(lv_out_file) THEN
 UTL_FILE.fclose(lv_out_file);
 END IF;

 END;
 END display_source;

END my_tools;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 303

Section Q: Self Check - Answer Key

Lesson: Section L (Continued)

Exercise 2 (continued)
Test your procedure
SQL> EXECUTE MY_TOOLS.DISPLAY_SOURCE ('<DIR_NAME>', '<output file
name>', '<subprogram name>');

• NOTE: parameters for DIR_NAME and SUBPROGRAM_NAME are case

sensitive. Good programmers will make the parameters case insensitive by handling
any case issues within the program (i.e. using and UPPER function)

• DIR_NAME should be the name of the directory that you assigned in Exercise 1.
• Output File Name should be a unique name you assign to the output file. Include

your initials in the file name to distinguish it from files for the other class
participants.

• Subprogram Name should be the name of one of the procedure or functions that you
created previously (e.g. CALC_AMOUNT_OWED, INSERT_ERRORS,
ACCOUNT).

Exercise 3
Create a second stored procedure called display_source within the MY_TOOLS package
(overloading the package). The procedure should only accept the parameters of a directory name
and file name. It will:

• Retrieve the source of all subprograms within your schema from USER_SOURCE and
write the output to a directory and file as specified by your instructor.

• Test the procedure by executing it and passing in the name of one of the procedures or
functions you created previously.

• Make this version case insensitive by handling the case restrictions inside the procedure.

Additions to the package header:
 PROCEDURE display_source (pi_directory IN VARCHAR2,

 pi_filename IN VARCHAR2
);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 304

Section Q: Self Check - Answer Key

Lesson: Section L (Continued)

Exercise 3 (continued)
Additions to package body:
 PROCEDURE display_source (pi_directory IN VARCHAR2,
 pi_filename IN VARCHAR2
)
 IS
 lv_out_file UTL_FILE.file_type;

 CURSOR source_cursor
 IS
 SELECT text
 FROM user_source
 ORDER BY name, type, line;
 BEGIN
 lv_out_file := UTL_FILE.fopen(UPPER(pi_directory), pi_filename,
'w');

 FOR source_rec IN source_cursor
 LOOP
 UTL_FILE.put_line (lv_out_file, source_rec.text);
 END LOOP;

 UTL_FILE.fclose(lv_out_file);
 EXCEPTION
 WHEN UTL_FILE.invalid_path
 THEN
 DBMS_OUTPUT.put_line ('Invalid path');
 WHEN OTHERS
 THEN
 DECLARE
 err_msg VARCHAR2 (200) := SUBSTR (SQLERRM, 1, 200);
 BEGIN
 DBMS_OUTPUT.put_line (err_msg);
 IF UTL_FILE.is_open(lv_out_file) THEN
 UTL_FILE.fclose(lv_out_file);
 END IF;

 END;
 END display_source;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 305

Section Q: Self Check - Answer Key

Lesson: Section L (Continued)

Exercise 3 (continued)

Testing Program:
SQL> EXECUTE MY_TOOLS.DISPLAY_SOURCE
 ('<DIR_NAME>','<Output File Name>');

Exercise 4
Create a third stored procedure within the package MY_TOOLS called LOG_ERROR. The
procedure should write error messages to a log file.

• The parameters passed should be a program name and error message.
• The log file should be named the program name parameter concatenated with '.log', and

in a directory created in Exercise 1.
• The procedure should write the current system time and the error message to the log file.
• Call the log_error procedure by forcing an error.

Additions to Package Header:

 PROCEDURE error_log (pi_directory IN VARCHAR2,
 pi_program_name IN VARCHAR2,
 pi_err_msg IN VARCHAR2
);

Additions to the Package Body:
 PROCEDURE error_log (pi_directory IN VARCHAR2,
 pi_program_name IN VARCHAR2,
 pi_err_msg IN VARCHAR2
)
 IS
 lv_out_file UTL_FILE.file_type;
 lv_curr_datetime VARCHAR2 (30)
 := TO_CHAR (SYSDATE, 'DD-MON-YYYY:HH:MI:SS');
 lv_log_file VARCHAR2 (30) := pi_program_name || '.log';
 BEGIN
 lv_out_file := UTL_FILE.fopen(pi_directory, lv_log_file, 'w');
 UTL_FILE.put_line (lv_out_file, CURRENT_DATE);
 UTL_FILE.put_line (lv_out_file, ' ' || pi_err_msg);
 UTL_FILE.fclose (lv_out_file);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 306

Section Q: Self Check - Answer Key

Lesson: Section L (Continued)

Exercise 4 (continued)

EXCEPTION
 WHEN UTL_FILE.invalid_operation
 THEN
 UTL_FILE.fclose_all;
 raise_application_error (-20061, 'Invalid Operation');
 WHEN UTL_FILE.invalid_filehandle
 THEN
 UTL_FILE.fclose_all;
 raise_application_error (-20062, 'Invalid File');
 WHEN UTL_FILE.write_error
 THEN
 UTL_FILE.fclose_all;
 raise_application_error (-20063, 'Write Error');
 WHEN OTHERS
 THEN
 UTL_FILE.fclose_all;
 RAISE;
 END error_log;

Code to test error_log procedure:

DECLARE
 lv_dummy varchar2(1);
BEGIN
 SELECT '12345' INTO LV_DUMMY
 FROM DUAL;
EXCEPTION
 WHEN OTHERS THEN
 DECLARE
 LV_SQLERRM VARCHAR2(200) := SUBSTR(SQLERRM,1,200);
 BEGIN
 My_tools.error_log('<DIR_NAME>','myprogram',
 lv_sqlerrm);
 END;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 307

Section Q: Self Check - Answer Key

Lesson: Section M

Exercise 1
Create a public pipe named TRAINx_PIPE, where x is your training account number. Submit a
message to the pipe.

DECLARE
 lv_status INTEGER;
BEGIN
 lv_status := DBMS_PIPE.create_pipe ('TRAINx_PIPE', 3000, FALSE);

 IF lv_status = 0
 THEN
 DBMS_OUTPUT.ENABLE (20000);
 DBMS_OUTPUT.put_line ('Successfully created pipe.');
 ELSE
 DBMS_OUTPUT.put_line ('Could not create pipe.');
 END IF;
END;
/

DECLARE
 lv_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('This is a test');
 lv_status := DBMS_PIPE.SEND_MESSAGE('TRAINx_PIPE');
 IF lv_status <> 0 THEN
 DBMS_OUTPUT.ENABLE(20000);
 DBMS_OUTPUT.PUT_LINE('Could not send message');
 END IF;
 END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 308

Section Q: Self Check - Answer Key

Lesson: Section M (Continued)

Exercise 2
Retrieve a message from a pipe that your neighbor submitted. Are you able to receive each
other's messages? (Remember, pipe names are case sensitive.)

DECLARE
 lv_message VARCHAR2(100);
 lv_status INTEGER;
BEGIN
 DBMS_OUTPUT.ENABLE(20000);
 status := DBMS_PIPE.RECEIVE_MESSAGE('TRAINx_PIPE');
 DBMS_PIPE.UNPACK_MESSAGE(lv_message);
 DBMS_OUTPUT.ENABLE(20000);
 DBMS_OUTPUT.PUT_LINE(lv_message);
 IF lv_status <> 0 THEN
 DBMS_OUTPUT.PUT_LINE('Could not receive message');
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 309

Section Q: Self Check - Answer Key

Lesson: Section M (Continued)

Exercise 3
Create an alert called TRAINx_ALERT, where x is your training account number. Work with a
neighbor to make sure that each of you can register and receive notification from an alert.

BEGIN
 DBMS_ALERT.SIGNAL('TRAINx_ALERT',
 'The transaction has been committed.');
END;

 COMMIT;

BEGIN
 DBMS_ALERT.REGISTER('TRAINx_ALERT');
END;

DECLARE
 lv_status INTEGER;
 lv_messg VARCHAR2 (100);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);
 DBMS_ALERT.waitone ('TRAINx_ALERT', lv_messg, lv_status, 30);

 IF lv_status = 0
 THEN
 DBMS_OUTPUT.put_line (lv_messg);
 ELSIF lv_status = 1
 THEN
 DBMS_OUTPUT.put_line ('Timeout on TRAINx_ALERT.');
 END IF;
END;

/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 310

Section Q: Self Check - Answer Key

Lesson: Section MN

Exercise 1
Create a procedure p_pidm_tables by running the script in your student_files folder called
SectN_Ex1.sql. The procedure can be used to identify which tables and how many records per
table a person has. This information may be useful in a data cleanup situation.

• The procedure accepts the parameter of pidm and schema owner.
• It retrieves tables from the view ALL_TAB_COLUMNS where the column name is like

'%PIDM%'.
• Then evaluates if a row exists in each table (derived from above step) for the pidm passed

in. If so, print the table name to the screen.

Execute the procedure, passing in your user ID (TRAINxx) and a PIDM from the SWRIDEN
table. This will return how many records for that pidm exist in each of your tables.

SQL>@<path of student files>\SectN_Ex1.sql

Procedure created.

SQL> execute p_pidm_tables('TRAINxx',12345);

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 311

Section Q: Self Check - Answer Key

Lesson: Section MN (Continued)

Exercise 2
Write an anonymous block that uses the EXECUTE IMMEDIATE built-in to execute an SQL
statement to find out how many address records a person has. Prompt for a PIDM, feeding the
data to a bind variable in the SQL string. Display the results of the SQL statement execution.

declare
 lv_pidm NUMBER(8) := &pidm;
 lv_statement VARCHAR2(200);
 lv_result NUMBER(8);
begin
 lv_statement := 'Select count(*) from swraddr where swraddr_pidm

= :b1';
 EXECUTE IMMEDIATE lv_statement INTO lv_result USING lv_pidm;
 DBMS_OUTPUT.put_line('PIDM ' || lv_pidm || ' has ' || lv_result

|| ' address records');
end;
/

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 312

Section Q: Self Check - Answer Key

Lesson: Section O

Exercise 1
Set the timing on in your SQL*Plus session and execute the following select statement (if using
SQL Developer, click on the Execute Explain Plan button):

SELECT SWRADDR_STREET_LINE1, SWRADDR_ZIP, SWRADDR_CITY,
SWRADDR_STAT_CODE
 FROM SWRIDEN, SWRADDR
 WHERE SWRIDEN.SWRIDEN_PIDM = SWRADDR.SWRADDR_PIDM;

Note the amount of time it took for the statement to execute. (If using SQL Developer, the
Explain Tab should have been activated when you pressed the Execute Explain Plan button.)

SQL> set timing on
SQL> SELECT SWRADDR_STREET_LINE1, SWRADDR_ZIP, SWRADDR_CITY,
 SWRADDR_STAT_CODE
 2 FROM SWRIDEN, SWRADDR
 3 WHERE SWRIDEN.SWRIDEN_PIDM = SWRADDR.SWRADDR_PIDM;

SWRADDR_STREET_LINE1 SWRADDR_ZI SWRADDR_CITY SWR
------------------------------ ---------- -------------------- ---
506 BROWN STREET 19380 WEST CHESTER PA
506 BROWN STREET 19380 WEST CHESTER PA
210 PINE STREET 94082 SAN FRANCISCO CA
PO BOX 1035 67233 BROWNVILLE KY
23 MARKET STREET 19382 WEST CHESTER PA
23 MARKET STREET 19382 WEST CHESTER PA
18 CHESTNUT ROAD 23456 NEW ORLEANS LA

7 rows selected.

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 313

Section Q: Self Check - Answer Key

Lesson: Section O (Continued)

Exercise 1 (continued)

Explain the plan for the select statement.

EXPLAIN PLAN FOR
 SELECT SWRADDR_STREET_LINE1, SWRADDR_ZIP, SWRADDR_CITY,
 SWRADDR_STAT_CODE
 FROM SWRIDEN, SWRADDR
 WHERE SWRADDR.SWRADDR_PIDM = SWRIDEN.SWRIDEN_PIDM;

Explained.

SELECT RTRIM(LPAD(' ',2*LEVEL)||
 RTRIM(OPERATION)||' '||
 RTRIM(OPTIONS)||' '||
 OBJECT_NAME) QUERY_PLAN
 FROM PLAN_TABLE
CONNECT BY PRIOR ID=PARENT_ID
START WITH ID=0;

QUERY_PLAN

 SELECT STATEMENT
 HASH JOIN
 TABLE ACCESS FULL SWRADDR
 TABLE ACCESS FULL SWRIDEN

Elapsed: 00:00:00.01

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 314

Section Q: Self Check - Answer Key

Lesson: Section O (Continued)

Exercise 2
Are indices being used, or is Oracle executing a full-table scan? If no indices are being used,
then create an index for SWRADDR. Rerun Explain Plan and view the results to make sure your
indices are being used. Rerun the Select statement and compare the execution time. Have you
improved the performance of the statement?

CREATE INDEX SWRADDR_PIDM_INDEX ON SWRADDR(SWRADDR_PIDM);

DELETE PLAN_TABLE;

EXPLAIN PLAN FOR
 SELECT SWRADDR_STREET_LINE1, SWRADDR_ZIP, SWRADDR_CITY,
 SWRADDR_STAT_CODE
 FROM SWRADDR, SWRIDEN
 WHERE SWRADDR.SWRADDR_PIDM = SWRIDEN.SWRIDEN_PIDM
 AND SWRIDEN.SWRIDEN_CHANGE_IND IS NULL;

(Results may vary based on database version)

QUERY_PLAN

 SELECT STATEMENT
 TABLE ACCESS BY INDEX ROWID SWRADDR
 NESTED LOOPS
 TABLE ACCESS FULL SWRIDEN
 INDEX RANGE SCAN SWRADDR_PIDM_INDEX

© SunGard 2004-2008 PL/SQL and Database Objects
 Page 315

 Release Date

This workbook was last updated on January 25, 2008.

